Loading jsMath...

Övningar 1.1

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 16 juli 2007 kl. 08.01 (redigera)
KTH.SE:u1zpa8nw (Diskussion | bidrag)
(Ny sida: __NOTOC__ ==Övning 1.1:1== <div class="ovning"> Beräkna (utan hjälp av räknedosa) <table width="100%" cellspacing="10px"> <tr align="left"> <td class="ntext">a)</td> <td class="ntext" w...)
← Gå till föregående ändring
Nuvarande version (18 juli 2007 kl. 08.17) (redigera) (ogör)
KTH.SE:u1zpa8nw (Diskussion | bidrag)

 
(10 mellanliggande versioner visas inte.)
Rad 1: Rad 1:
__NOTOC__ __NOTOC__
-==Övning 1.1:1==+ 
-<div class="ovning">+'''Övning 1.1:1'''
-Beräkna (utan hjälp av räknedosa)+<div class="ovning" style="margin-top:-20px; margin-bottom:-5px;">
-<table width="100%" cellspacing="10px">+Beräkna (utan hjälp av räknedosa)&nbsp;&nbsp;&nbsp;
 +<table width="100%">
<tr align="left"> <tr align="left">
-<td class="ntext">a)</td>+<td class="ntext">a)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="50%">3-7-4+6-5</td> <td class="ntext" width="50%">3-7-4+6-5</td>
-<td class="ntext">b)</td>+<td class="ntext">b)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="50%">3-(7-4)+(6-5)</td> <td class="ntext" width="50%">3-(7-4)+(6-5)</td>
</tr> </tr>
<tr align="left"> <tr align="left">
-<td class="ntext">c)</td>+<td class="ntext">c)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="50%">3-(7-(4+6)-5)</td> <td class="ntext" width="50%">3-(7-(4+6)-5)</td>
-<td class="ntext">d)</td>+<td class="ntext">d)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="50%">3-(7-(4+6))-5</td> <td class="ntext" width="50%">3-(7-(4+6))-5</td>
</tr> </tr>
Rad 20: Rad 21:
</div> </div>
- +'''Övning 1.1:2'''
- +<div class="ovning" style="margin-top:-20px; margin-bottom:-5px;">
-==Övning 1.1:2==+Beräkna (utan hjälp av räknedosa)&nbsp;&nbsp;&nbsp;
-<div class="ovning">+<table width="100%">
-Beräkna (utan hjälp av räknedosa)+
-<table width="100%" cellspacing="10px">+
<tr align="left"> <tr align="left">
-<td class="ntext">a)</td>+<td class="ntext">a)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="50%">(3-(7-4))(6-5)</td> <td class="ntext" width="50%">(3-(7-4))(6-5)</td>
-<td class="ntext">b)</td>+<td class="ntext">b)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="50%">3-(((7-4)+6)-5)</td> <td class="ntext" width="50%">3-(((7-4)+6)-5)</td>
</tr> </tr>
<tr align="left"> <tr align="left">
-<td class="ntext">c)</td>+<td class="ntext">c)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="50%">3\cdot(-7)-4\cdot(6-5)</td> <td class="ntext" width="50%">3\cdot(-7)-4\cdot(6-5)</td>
-<td class="ntext">d)</td>+<td class="ntext">d)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="50%">3\cdot(-7)-(4+6)/(-5)</td> <td class="ntext" width="50%">3\cdot(-7)-(4+6)/(-5)</td>
</tr> </tr>
Rad 42: Rad 41:
</div> </div>
-==Övning 1.1:3==+'''Övning 1.1:3'''
-<div class="ovning">+<div class="ovning" style="margin-top:-20px; margin-bottom:-5px;">
Vilka av följande tal tillhör de naturliga talen? heltalen? Vilka av följande tal tillhör de naturliga talen? heltalen?
rationella talen? irrationella talen? Förenkla först! rationella talen? irrationella talen? Förenkla först!
-<table width="100%" cellspacing="10px">+<table width="100%">
<tr align="left"> <tr align="left">
-<td class="ntext">a)</td>+<td class="ntext">a)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">8</td> <td class="ntext" width="33%">8</td>
-<td class="ntext">b)</td>+<td class="ntext">b)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">-4</td> <td class="ntext" width="33%">-4</td>
-<td class="ntext">c)</td>+<td class="ntext">c)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">8-4</td> <td class="ntext" width="33%">8-4</td>
</tr> </tr>
<tr align="left"> <tr align="left">
-<td class="ntext">d)</td>+<td class="ntext">d)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">4-8</td> <td class="ntext" width="33%">4-8</td>
-<td class="ntext">e)</td>+<td class="ntext">e)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">8(-4)</td> <td class="ntext" width="33%">8(-4)</td>
-<td class="ntext">f)</td>+<td class="ntext">f)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">(-8)(-4)</td> <td class="ntext" width="33%">(-8)(-4)</td>
</tr> </tr>
<tr align="left"> <tr align="left">
-<td class="ntext">g)</td>+<td class="ntext">g)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">\displaystyle \frac{4}{-8}</td> <td class="ntext" width="33%">\displaystyle \frac{4}{-8}</td>
-<td class="ntext">h)</td>+<td class="ntext">h)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">\displaystyle \frac{-8}{-4}</td> <td class="ntext" width="33%">\displaystyle \frac{-8}{-4}</td>
-<td class="ntext">i)</td>+<td class="ntext">i)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">\displaystyle \frac{\sqrt{2}}{3}</td> <td class="ntext" width="33%">\displaystyle \frac{\sqrt{2}}{3}</td>
</tr> </tr>
<tr align="left"> <tr align="left">
-<td class="ntext">j)</td>+<td class="ntext">j)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">\displaystyle \Bigl(\frac{4}{\sqrt{2}}\Bigr)^2</td> <td class="ntext" width="33%">\displaystyle \Bigl(\frac{4}{\sqrt{2}}\Bigr)^2</td>
-<td class="ntext">k)</td>+<td class="ntext">k)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">-\pi</td> <td class="ntext" width="33%">-\pi</td>
-<td class="ntext">l)</td>+<td class="ntext">l)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="33%">\pi+1</td> <td class="ntext" width="33%">\pi+1</td>
</tr> </tr>
Rad 83: Rad 82:
</div> </div>
-==Övning 1.1:4==+'''Övning 1.1:4'''
-<div class="ovning">+<div class="ovning" style="margin-top:-20px; margin-bottom:-5px;">
Ordna följande tal i storleksordning Ordna följande tal i storleksordning
-<table width="100%" cellspacing="10px">+<table width="100%">
<tr align="left"> <tr align="left">
-<td class="ntext">a)</td>+<td class="ntext">a)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="100%">\displaystyle 2,\ \frac{3}{5},\ \frac{5}{3}\ och \ \displaystyle \frac{7}{3}</td> <td class="ntext" width="100%">\displaystyle 2,\ \frac{3}{5},\ \frac{5}{3}\ och \ \displaystyle \frac{7}{3}</td>
</tr> </tr>
<tr> <tr>
-<td class="ntext">b)</td>+<td class="ntext">b)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="100%">\displaystyle -\frac{1}{2},\ -\frac{1}{5},\ -\frac{3}{10}\ och \ \displaystyle -\frac{1}{3}</td> <td class="ntext" width="100%">\displaystyle -\frac{1}{2},\ -\frac{1}{5},\ -\frac{3}{10}\ och \ \displaystyle -\frac{1}{3}</td>
</tr> </tr>
<tr> <tr>
-<td class="ntext">c)</td>+<td class="ntext">c)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="100%">\displaystyle \frac{1}{2},\ \frac{2}{3},\ \frac{3}{5},\ \frac{5}{8}\ och \ \displaystyle \frac{21}{34}</td> <td class="ntext" width="100%">\displaystyle \frac{1}{2},\ \frac{2}{3},\ \frac{3}{5},\ \frac{5}{8}\ och \ \displaystyle \frac{21}{34}</td>
</tr> </tr>
Rad 103: Rad 102:
</div> </div>
-==Övning 1.1:5==+'''Övning 1.1:5'''
-<div class="ovning">+<div class="ovning" style="margin-top:-20px; margin-bottom:-5px;">
Ange decimalutvecklingen med tre korrekta decimaler till Ange decimalutvecklingen med tre korrekta decimaler till
-<table width="100%" cellspacing="10px">+<table width="100%">
<tr align="left"> <tr align="left">
-<td class="ntext">a)</td>+<td class="ntext">a)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="25%">\displaystyle \frac{7}{6}</td> <td class="ntext" width="25%">\displaystyle \frac{7}{6}</td>
-<td class="ntext">b)</td>+<td class="ntext">b)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="25%">\displaystyle \frac{9}{4}</td> <td class="ntext" width="25%">\displaystyle \frac{9}{4}</td>
-<td class="ntext">c)</td>+<td class="ntext">c)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="25%">\displaystyle \frac{2}{7}</td> <td class="ntext" width="25%">\displaystyle \frac{2}{7}</td>
-<td class="ntext">d)</td>+<td class="ntext">d)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="25%">\sqrt{2}</td> <td class="ntext" width="25%">\sqrt{2}</td>
</tr> </tr>
Rad 120: Rad 119:
</table> </table>
</div> </div>
- +<br><br><br>
-==Övning 1.1:6==+'''Övning 1.1:6'''
-<div class="ovning">+<div class="ovning" style="margin-top:-20px; margin-bottom:-5px;">
Vilka av följande tal är rationella? Ange dem som en kvot mellan heltal. Vilka av följande tal är rationella? Ange dem som en kvot mellan heltal.
-<table width="100%" cellspacing="10px">+<table width="100%">
<tr align="left"> <tr align="left">
-<td class="ntext">a)</td>+<td class="ntext">a)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="100%">3,14</td> <td class="ntext" width="100%">3,14</td>
</tr> </tr>
<tr align="left"> <tr align="left">
-<td class="ntext">b)</td>+<td class="ntext">b)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="100%">3{,}1416\,1416\,1416\,\dots</td> <td class="ntext" width="100%">3{,}1416\,1416\,1416\,\dots</td>
</tr> </tr>
<tr align="left"> <tr align="left">
-<td class="ntext">c)</td>+<td class="ntext">c)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="100%">0{,}2\,001\,001\,001\,\dots\, (därefter är var tredje decimal en 1:a och övriga 0)</td> <td class="ntext" width="100%">0{,}2\,001\,001\,001\,\dots\, (därefter är var tredje decimal en 1:a och övriga 0)</td>
</tr> </tr>
<tr align="left"> <tr align="left">
-<td class="ntext">d)</td>+<td class="ntext">d)&nbsp;&nbsp;&nbsp;</td>
<td class="ntext" width="100%">0{,}10\,100\,1000\,10000\,1\dots\, (en 1:a, en 0:a, en 1:a, två 0:or, en 1:a, tre 0:or osv.)</td> <td class="ntext" width="100%">0{,}10\,100\,1000\,10000\,1\dots\, (en 1:a, en 0:a, en 1:a, två 0:or, en 1:a, tre 0:or osv.)</td>
</tr> </tr>
Rad 144: Rad 143:
</table> </table>
</div> </div>
 +<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
 +<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>

Nuvarande version


Övning 1.1:1

Beräkna (utan hjälp av räknedosa)   

a)    3-7-4+6-5 b)    3-(7-4)+(6-5)
c)    3-(7-(4+6)-5) d)    3-(7-(4+6))-5

Övning 1.1:2

Beräkna (utan hjälp av räknedosa)   

a)    (3-(7-4))(6-5) b)    3-(((7-4)+6)-5)
c)    3\cdot(-7)-4\cdot(6-5) d)    3\cdot(-7)-(4+6)/(-5)

Övning 1.1:3

Vilka av följande tal tillhör de naturliga talen? heltalen? rationella talen? irrationella talen? Förenkla först!

a)    8 b)    -4 c)    8-4
d)    4-8 e)    8(-4) f)    (-8)(-4)
g)    \displaystyle \frac{4}{-8} h)    \displaystyle \frac{-8}{-4} i)    \displaystyle \frac{\sqrt{2}}{3}
j)    \displaystyle \Bigl(\frac{4}{\sqrt{2}}\Bigr)^2 k)    -\pi l)    \pi+1

Övning 1.1:4

Ordna följande tal i storleksordning

a)    \displaystyle 2,\ \frac{3}{5},\ \frac{5}{3}\ och \ \displaystyle \frac{7}{3}
b)    \displaystyle -\frac{1}{2},\ -\frac{1}{5},\ -\frac{3}{10}\ och \ \displaystyle -\frac{1}{3}
c)    \displaystyle \frac{1}{2},\ \frac{2}{3},\ \frac{3}{5},\ \frac{5}{8}\ och \ \displaystyle \frac{21}{34}

Övning 1.1:5

Ange decimalutvecklingen med tre korrekta decimaler till

a)    \displaystyle \frac{7}{6} b)    \displaystyle \frac{9}{4} c)    \displaystyle \frac{2}{7} d)    \sqrt{2}




Övning 1.1:6

Vilka av följande tal är rationella? Ange dem som en kvot mellan heltal.

a)    3,14
b)    3{,}1416\,1416\,1416\,\dots
c)    0{,}2\,001\,001\,001\,\dots\, (därefter är var tredje decimal en 1:a och övriga 0)
d)    0{,}10\,100\,1000\,10000\,1\dots\, (en 1:a, en 0:a, en 1:a, två 0:or, en 1:a, tre 0:or osv.)





























































Personliga verktyg