Övningar 2.1

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 16 juli 2007 kl. 10.44 (redigera)
KTH.SE:u1zpa8nw (Diskussion | bidrag)

← Gå till föregående ändring
Nuvarande version (17 juli 2007 kl. 09.38) (redigera) (ogör)
KTH.SE:u1zpa8nw (Diskussion | bidrag)

 
Rad 169: Rad 169:
</table> </table>
</div> </div>
 +<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>

Nuvarande version

Övning 2.1:1

Utveckla

a)    $3x(x-1)$ b)    $(1+x-x^2)xy$ c)    $-x^2(4-y^2)$
d)    $x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right)$ e)    $(x-7)^2$ f)    $(5+4y)^2$
g)    $(y^2-3x^3)^2$ h)    $(5x^3+3x^5)^2$

Övning 2.1:2

Utveckla och förenkla så långt som möjligt

a)    $(x-4)(x-5)-3x(2x-3)$ b)    $(1-5x)(1+15x)-3(2-5x)(2+5x)$
c)    $(3x+4)^2-(3x-2)(3x-8)$ d)    $(3x^2+2)(3x^2-2)(9x^4+4)$
e)    $(a+b)   ^2+(a-b)   ^2$

Övning 2.1:3

Faktorisera så långt som möjligt

a)    $x^2-36$ b)    $5x^2-20$ c)    $x^2+6x+9$
d)    $x^2-10x+25$ e)    $18x-2x^3$ f)    $16x^2+8x+1$

Övning 2.1:4

Bestäm koefficienterna framför $\,x\,$ och $\,x^2\,$ när följande uttryck utvecklas

a)    $(x+2)(3x^2-x+5)$
b)    $(1+x+x^2+x^3)(2-x+x^2+x^4)$
c)    $(x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4)$

Övning 2.1:5

Förenkla så långt som möjligt

a)    $\displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x}$ b)    $\displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4}$
c)    $\displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)}$ d)    $\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}$

Övning 2.1:6

Förenkla så långt som möjligt

a)    $\left(x-y+\displaystyle\frac{x^2}{y-x}\right)$ $\left(\displaystyle\frac{y}{2x-y}-1\right)$ b)    $\displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2$
c)    $\displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b}$ d)    $\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}$

Övning 2.1:7

Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck

a)    $\displaystyle \frac{2}{x+3}-\frac{2}{x+5}$ b)    $x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2}$ c)    $\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}$

Övning 2.1:8

Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck

a)    $\displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ }$ b)    $\displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}}$ c)    $\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}$


































Personliga verktyg