Loading jsMath...

4.4 Övningar

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 30 april 2007 kl. 14.20 (redigera)
Annagf (Diskussion | bidrag)
(Övning 4.4:2)
← Gå till föregående ändring
Versionen från 30 april 2007 kl. 14.21 (redigera) (ogör)
Annagf (Diskussion | bidrag)
(Övning 4.4:2)
Gå till nästa ändring →
Rad 176: Rad 176:
</td> </td>
<td class="ntext">\textrm{e) }</td> <td class="ntext">\textrm{e) }</td>
-<td class="ntext">$\left\{ \matrix{+<td class="ntext">
 +$\left\{ \matrix{
x=\displaystyle\frac{\pi}{30}+\displaystyle\frac{2}{5}n\pi\cr x=\displaystyle\frac{\pi}{30}+\displaystyle\frac{2}{5}n\pi\cr
-x=\displaystyle\frac{\pi}{6}+\displaystyle\frac{2}{5}n\pi } \right.$</td>+x=\displaystyle\frac{\pi}{6}+\displaystyle\frac{2}{5}n\pi } \right.$
 +</td>
<td class="ntext">\textrm{f) }</td> <td class="ntext">\textrm{f) }</td>
<td class="ntext">$\left\{ \matrix{x=\displaystyle\frac{\pi}{4}+\displaystyle\frac{2}{3}n\pi\cr <td class="ntext">$\left\{ \matrix{x=\displaystyle\frac{\pi}{4}+\displaystyle\frac{2}{3}n\pi\cr

Versionen från 30 april 2007 kl. 14.21

Övning 4.4:1

För vilka vinklar v, där 0 \leq v\leq 2\pi, gäller att

\textrm{a) } \sin{v}=\displaystyle \frac{1}{2} \textrm{b) } \cos{v}=\displaystyle \frac{1}{2} \textrm{c) } \sin{v}=1
\textrm{d) } \tan{v}=1 \textrm{e) } \cos{v}=2 \textrm{f) } \sin{v}=-\displaystyle \frac{1}{2}
\textrm{g) } \tan{v}=-\displaystyle \frac{1}{\sqrt{3}}

Övning 4.4:2

Lös ekvationen

\textrm{a) } \sin{x}=\displaystyle \frac{\sqrt{3}}{2} \textrm{b) } \cos{x}=\displaystyle \frac{1}{2} \textrm{c) } \sin{x}=0
\textrm{d) } \sin{5x}=\displaystyle \frac{1}{\sqrt{2}} \textrm{e) } \sin{5x}=\displaystyle \frac{1}{2} \textrm{f) } \cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}
Personliga verktyg