4.4 Övningar
Sommarmatte 1
Versionen från 30 april 2007 kl. 16.58 (redigera) Ossiang (Diskussion | bidrag) (→Övning 4.4:6) ← Gå till föregående ändring |
Versionen från 30 april 2007 kl. 16.59 (redigera) (ogör) Ossiang (Diskussion | bidrag) (→Övning 4.4:6) Gå till nästa ändring → |
||
Rad 434: | Rad 434: | ||
$x=n\pi$ | $x=n\pi$ | ||
</td> | </td> | ||
- | <td class="ntext">$b)</td> | + | <td class="ntext">b)</td> |
<td class="ntext"> | <td class="ntext"> | ||
$\left\{ \matrix{x=\displaystyle \frac{\pi}{4}+2n\pi\cr | $\left\{ \matrix{x=\displaystyle \frac{\pi}{4}+2n\pi\cr |
Versionen från 30 april 2007 kl. 16.59
Innehåll |
Övning 4.4:1
För vilka vinklar $v$, där $0 \leq v\leq 2\pi$, gäller att
$\textrm{a) }$ | $\sin{v}=\displaystyle \frac{1}{2}$ | $\textrm{b) }$ | $\cos{v}=\displaystyle \frac{1}{2}$ | $\textrm{c) }$ | $\sin{v}=1$ |
$\textrm{d) }$ | $\tan{v}=1$ | $\textrm{e) }$ | $\cos{v}=2$ | $\textrm{f) }$ | $\sin{v}=-\displaystyle \frac{1}{2}$ |
$\textrm{g) }$ | $\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}$ | ||||
Facit till alla delfrågorna
$\textrm{a) }$ | $\displaystyle v=\frac{\pi}{6}, \displaystyle v=\frac{5\pi}{6}$ | $\textrm{b) }$ | $\displaystyle v=\frac{\pi}{3}, \displaystyle v=\frac{5\pi}{3}$ | $\textrm{c) }$ | $\displaystyle v=\frac{\pi}{2}$ |
$\textrm{d) }$ | $\displaystyle v=\frac{\pi}{4},\displaystyle v=\frac{5\pi}{4}$ | $\textrm{e) }$ | $\textrm{lösning saknas}$ | $\textrm{f) }$ | $\displaystyle v=\frac{11\pi}{6}, \displaystyle v=\frac{7\pi}{6}$ |
$\textrm{g) }$ | $\displaystyle v=\frac{5\pi}{6}, \displaystyle v=\frac{11\pi}{6}$ | ||||
Övning 4.4:2
Lös ekvationen
$\textrm{a) }$ | $\sin{x}=\displaystyle \frac{\sqrt{3}}{2}$ | $\textrm{b) }$ | $\cos{x}=\displaystyle \frac{1}{2} $ | $\textrm{c) }$ | $\sin{x}=0$ |
$\textrm{d) }$ | $\sin{5x}=\displaystyle \frac{1}{\sqrt{2}} $ | $\textrm{e) }$ | $\sin{5x}=\displaystyle \frac{1}{2}$ | $\textrm{f) }$ | $\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}$ |
Facit till alla delfrågorna
$\textrm{a) }$ |
$\left\{ \matrix{ x=\displaystyle\frac{\pi}{3}+2n\pi\cr x=\displaystyle\frac{2\pi}{3}+2n\pi } \right.$ |
$\textrm{b) }$ |
$\left\{ \matrix{ x=\displaystyle\frac{\pi}{3}+2n\pi\cr x=\displaystyle\frac{5\pi}{3}+2n\pi } \right.$ |
$\textrm{c) }$ | $x=n\pi$ |
$\textrm{d) }$ |
$\left\{ \matrix{ x=\displaystyle\frac{\pi}{20}+\displaystyle\frac{2n\pi}{5}\cr x=\displaystyle\frac{3\pi}{20}+\displaystyle\frac{2n\pi}{5} } \right.$ |
$\textrm{e) }$ |
$\left\{ \matrix{ x=\displaystyle\frac{\pi}{30}+\displaystyle\frac{2}{5}n\pi\cr x=\displaystyle\frac{\pi}{6}+\displaystyle\frac{2}{5}n\pi } \right.$ |
$\textrm{f) }$ | $\left\{ \matrix{x=\displaystyle\frac{\pi}{4}+\displaystyle\frac{2}{3}n\pi\cr x=\displaystyle\frac{5\pi}{12}+\displaystyle\frac{2}{3}n\pi } \right.$ |
Övning 4.4:3
Lös ekvationen
a) | $\cos{x}=\cos{\left( \displaystyle \frac{\pi}{6} \right)}$ | b) | $\sin{x}=\sin{\left( \displaystyle \frac{\pi}{5} \right)}$ |
c) | $\sin{(x+40^\circ)}=\sin{65^\circ}$ | d) | $\sin{3x}=\sin{15^\circ}$ |
Facit till alla delfrågorna
$\textrm{a) }$ |
$\left\{ \matrix{ x=\displaystyle\frac{\pi}{6}+2n\pi\cr x=\displaystyle\frac{11\pi}{6}+2n\pi }\right.$ |
$\textrm{b) }$ |
$\left\{ \matrix{ x=\displaystyle\frac{\pi}{5}+2n\pi\cr x=\displaystyle\frac{4\pi}{5}+2n\pi }\right.$ |
$\textrm{c) }$ |
$\left\{ \matrix{ x=25^\circ + n\cdot 360^\circ\cr x=75^\circ + n\cdot 360^\circ }\right.$ |
$\textrm{d) }$ |
$\left\{ \matrix{ x=5^\circ + n \cdot 120^\circ \cr x= 55^\circ + n \cdot 120^\circ }\right.$ |
Övning 4.4:4
Bestäm de vinklar $v$ i intervallet $0^\circ \leq v \leq 360^\circ$ som uppfyller $\cos{\left(2v+10^\circ\right)}=\cos{110^\circ}$.
$v_1=50^\circ, v_2=120^\circ, v_3=230^\circ$ och $v_4=300^\circ$
Övning 4.4:5
Lös ekvationen
$\textrm{a) }$ | $\sin{3x}=\sin{x}$ | $\textrm{b) }$ | $\tan{x}=\tan{4x}$ | $\textrm{c) }$ | $\cos{5x}=\cos(x+\pi/5)$ |
Facit till alla delfrågorna
$\textrm{a) }$ |
$\left\{ \matrix{ x=n\pi\cr x=\displaystyle \frac{\pi}{4}+\displaystyle \frac{1}{2}n\pi }\right.$ |
$\textrm{b) }$ | $x=\displaystyle \frac{1}{3}n\pi$ | $\textrm{c) }$ |
$\left\{\matrix{ x=\displaystyle \frac{\pi}{20}+\displaystyle \frac{1}{2}n\pi\cr x=-\displaystyle \frac{\pi}{30}+\displaystyle \frac{1}{3}n\pi }\right.$ |
Övning 4.4:6
Lös ekvationen
a) | $\sin x\cdot \cos 3x = 2\sin x$ | b) | $\sqrt{2}\sin{x}\cos{x}=\cos{x}$ | c) | $\sin 2x = -\sin x$ |
Facit till alla delfrågorna
a) |
$x=n\pi$ |
b) |
$\left\{ \matrix{x=\displaystyle \frac{\pi}{4}+2n\pi\cr x=\displaystyle \frac{\pi}{2}+n\pi\cr x=\displaystyle \frac{3\pi}{4}+2n\pi}\right.$ |
c) |
$\left\{ \matrix{ x=\displaystyle \frac{2n\pi}{3}\cr x=\displaystyle \pi + 2n\pi\ }\right.$ |
Övning 4.4:7
Lös ekvationen
a) | $2\sin^2{x}+\sin{x}=1$ | b) | $2\sin^2{x}-3\cos{x}=0$ | c) | $\cos{3x}=\sin{4x}$ |
Facit till alla delfrågorna
a) |
$\left\{ \matrix{ x=\displaystyle \frac{\pi}{6}+2n\pi\cr x=\displaystyle \frac{5\pi}{6}+2n\pi\cr x=\displaystyle \frac{3\pi}{2}+2n\pi }\right.$ |
b) | $x=\pm \displaystyle \frac{\pi}{3} + 2n\pi $ | c) |
$\left\{ \matrix{ x=\displaystyle \frac{\pi}{2}+2n\pi\cr x=\displaystyle \frac{\pi}{14}+\displaystyle \frac{2}{7}n\pi }\right.$ |
Övning 4.4:8
Lös ekvationen
a) | $\sin{2x}=\sqrt{2}\cos{x}$ | b) | $\sin{x}=\sqrt{3}\cos{x}$ | c) | $\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}$ |
Facit till alla delfrågorna
a) |
$\left\{ \matrix{ x=\displaystyle \frac{\pi}{4}+2n\pi\cr x=\displaystyle \frac{\pi}{2}+n\pi\cr x=\displaystyle \frac{3\pi}{4}+2n\pi }\right.$ |
b) | $x=\displaystyle \frac{\pi}{3}+n\pi$ | c) |
$\left\{ \matrix{ x=n\pi\cr x=\displaystyle \frac{3\pi}{4}+n\pi }\right.$ |