4.4 Övningar

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 30 april 2007 kl. 17.01 (redigera)
Ossiang (Diskussion | bidrag)
(Övning 4.4:3)
← Gå till föregående ändring
Versionen från 30 april 2007 kl. 17.02 (redigera) (ogör)
Ossiang (Diskussion | bidrag)
(Övning 4.4:2)
Gå till nästa ändring →
Rad 118: Rad 118:
</div> </div>
-==Övning 4.4:2==+==&Ouml;vning 4.4:2==
<div class="ovning"> <div class="ovning">
L&ouml;s ekvationen L&ouml;s ekvationen
Rad 124: Rad 124:
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{a) }$</td>+<td class="ntext">a)</td>
<td class="ntext">$\sin{x}=\displaystyle \frac{\sqrt{3}}{2}$</td> <td class="ntext">$\sin{x}=\displaystyle \frac{\sqrt{3}}{2}$</td>
-<td class="ntext">$\textrm{b) }$</td>+<td class="ntext">b)</td>
<td class="ntext">$\cos{x}=\displaystyle \frac{1}{2} $</td> <td class="ntext">$\cos{x}=\displaystyle \frac{1}{2} $</td>
-<td class="ntext">$\textrm{c) }$</td>+<td class="ntext">c)</td>
<td class="ntext">$\sin{x}=0$</td> <td class="ntext">$\sin{x}=0$</td>
</tr> </tr>
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{d) }$</td>+<td class="ntext">d)</td>
<td class="ntext">$\sin{5x}=\displaystyle \frac{1}{\sqrt{2}} $</td> <td class="ntext">$\sin{5x}=\displaystyle \frac{1}{\sqrt{2}} $</td>
-<td class="ntext">$\textrm{e) }$</td>+<td class="ntext">e)</td>
<td class="ntext">$\sin{5x}=\displaystyle \frac{1}{2}$</td> <td class="ntext">$\sin{5x}=\displaystyle \frac{1}{2}$</td>
-<td class="ntext">$\textrm{f) }$</td>+<td class="ntext">f)</td>
<td class="ntext">$\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}$</td> <td class="ntext">$\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}$</td>
</tr> </tr>
Rad 151: Rad 151:
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{a) }$</td>+<td class="ntext">a)</td>
<td class="ntext"> <td class="ntext">
$\left\{ \matrix{ $\left\{ \matrix{
Rad 157: Rad 157:
x=\displaystyle\frac{2\pi}{3}+2n\pi } \right.$ x=\displaystyle\frac{2\pi}{3}+2n\pi } \right.$
</td> </td>
-<td class="ntext">$\textrm{b) }$</td>+<td class="ntext">b)</td>
<td class="ntext"> <td class="ntext">
$\left\{ \matrix{ $\left\{ \matrix{
Rad 163: Rad 163:
x=\displaystyle\frac{5\pi}{3}+2n\pi } \right.$ x=\displaystyle\frac{5\pi}{3}+2n\pi } \right.$
</td> </td>
-<td class="ntext">$\textrm{c) }$</td>+<td class="ntext">c)</td>
<td class="ntext"> <td class="ntext">
$x=n\pi$</td> $x=n\pi$</td>
Rad 169: Rad 169:
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{d) }$</td>+<td class="ntext">d)</td>
<td class="ntext"> <td class="ntext">
$\left\{ \matrix{ $\left\{ \matrix{
Rad 175: Rad 175:
x=\displaystyle\frac{3\pi}{20}+\displaystyle\frac{2n\pi}{5} } \right.$ x=\displaystyle\frac{3\pi}{20}+\displaystyle\frac{2n\pi}{5} } \right.$
</td> </td>
-<td class="ntext">$\textrm{e) }$</td>+<td class="ntext">e)</td>
<td class="ntext"> <td class="ntext">
$\left\{ \matrix{ $\left\{ \matrix{
Rad 181: Rad 181:
x=\displaystyle\frac{\pi}{6}+\displaystyle\frac{2}{5}n\pi } \right.$ x=\displaystyle\frac{\pi}{6}+\displaystyle\frac{2}{5}n\pi } \right.$
</td> </td>
-<td class="ntext">$\textrm{f) }$</td>+<td class="ntext">f)</td>
<td class="ntext">$\left\{ \matrix{x=\displaystyle\frac{\pi}{4}+\displaystyle\frac{2}{3}n\pi\cr <td class="ntext">$\left\{ \matrix{x=\displaystyle\frac{\pi}{4}+\displaystyle\frac{2}{3}n\pi\cr
x=\displaystyle\frac{5\pi}{12}+\displaystyle\frac{2}{3}n\pi } \right.$</td> x=\displaystyle\frac{5\pi}{12}+\displaystyle\frac{2}{3}n\pi } \right.$</td>

Versionen från 30 april 2007 kl. 17.02

Innehåll

Övning 4.4:1

För vilka vinklar $v$, där $0 \leq v\leq 2\pi$, gäller att

$\textrm{a) }$ $\sin{v}=\displaystyle \frac{1}{2}$ $\textrm{b) }$ $\cos{v}=\displaystyle \frac{1}{2}$ $\textrm{c) }$ $\sin{v}=1$
$\textrm{d) }$ $\tan{v}=1$ $\textrm{e) }$ $\cos{v}=2$ $\textrm{f) }$ $\sin{v}=-\displaystyle \frac{1}{2}$
$\textrm{g) }$ $\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}$

Övning 4.4:2

Lös ekvationen

a) $\sin{x}=\displaystyle \frac{\sqrt{3}}{2}$ b) $\cos{x}=\displaystyle \frac{1}{2} $ c) $\sin{x}=0$
d) $\sin{5x}=\displaystyle \frac{1}{\sqrt{2}} $ e) $\sin{5x}=\displaystyle \frac{1}{2}$ f) $\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}$

Övning 4.4:3

Lös ekvationen

a) $\cos{x}=\cos{\left( \displaystyle \frac{\pi}{6} \right)}$ b) $\sin{x}=\sin{\left( \displaystyle \frac{\pi}{5} \right)}$
c) $\sin{(x+40^\circ)}=\sin{65^\circ}$ d) $\sin{3x}=\sin{15^\circ}$

Övning 4.4:4

Bestäm de vinklar $v$ i intervallet $0^\circ \leq v \leq 360^\circ$ som uppfyller $\cos{\left(2v+10^\circ\right)}=\cos{110^\circ}$.

Övning 4.4:5

Lös ekvationen

a) $\sin{3x}=\sin{x}$ b) $\tan{x}=\tan{4x}$ c) $\cos{5x}=\cos(x+\pi/5)$

Övning 4.4:6

Lös ekvationen

a) $\sin x\cdot \cos 3x = 2\sin x$ b) $\sqrt{2}\sin{x}\cos{x}=\cos{x}$ c) $\sin 2x = -\sin x$

Övning 4.4:7

Lös ekvationen

a) $2\sin^2{x}+\sin{x}=1$ b) $2\sin^2{x}-3\cos{x}=0$ c) $\cos{3x}=\sin{4x}$

Övning 4.4:8

Lös ekvationen

a) $\sin{2x}=\sqrt{2}\cos{x}$ b) $\sin{x}=\sqrt{3}\cos{x}$ c) $\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}$
Personliga verktyg