4. Trigonometri
Sommarmatte 1
Versionen från 10 maj 2007 kl. 16.01 (redigera) Lina (Diskussion | bidrag) ← Gå till föregående ändring |
Versionen från 10 maj 2007 kl. 16.02 (redigera) (ogör) Lina (Diskussion | bidrag) Gå till nästa ändring → |
||
Rad 34: | Rad 34: | ||
Om man är van att tänka på cosinus och sinus som förhållanden mellan sidorna i en rätvinklig triangel så är det viktigt att också fundera ordentligt på dessa funktioner i enhetscirkeln. Denna bild gör det lättare att förstå trigonometriska samband som periodicitet, trigonometriska ettan, samband för dubblering av vinkeln samt formler för derivator. | Om man är van att tänka på cosinus och sinus som förhållanden mellan sidorna i en rätvinklig triangel så är det viktigt att också fundera ordentligt på dessa funktioner i enhetscirkeln. Denna bild gör det lättare att förstå trigonometriska samband som periodicitet, trigonometriska ettan, samband för dubblering av vinkeln samt formler för derivator. | ||
+ | |||
[[Bild:762330.jpg|thumb|250px|[http://www.theducation.se/kurser/experiment/gyma/applets/ex31_randvinkelsatsen/index.html Experimentera med randvinkelsatsen]]] | [[Bild:762330.jpg|thumb|250px|[http://www.theducation.se/kurser/experiment/gyma/applets/ex31_randvinkelsatsen/index.html Experimentera med randvinkelsatsen]]] |
Versionen från 10 maj 2007 kl. 16.02
Hur gammal är geometrin och trigonometrin egentligen och när började man använda dessa metoder för att lösa problem?
Vad är geometri?Geometri är en mycket gammal vetenskap. Geometri är grekiska och betyder ”läran om rummet”. "Ge" står för jord och "metrein" betyder mäta. Långt före Jesu födelse hade skickliga matematiker utvecklat geometrin. Den kanske mest berömde är EUKLIDES (300-talet f.Kr). Han gav ut ett berömt verk med titeln ELEMENTA - där han sammanfattade sin tids matematiska vetande. På 1600-talet började man ifrågasätta en del av Euklides s.k AXIOM och det utvecklades en ICKE-EUKLIDISK geometri som fick stor betydelse i olika sammanhang.
I detta kapitel ska vi se några exempel på hur geometriska objekt som linjer, parabler och cirklar beskrivs av ekvationer. På liknande sätt kan olika områden beskrivas av olikheter.
Cirkeln med radie 1 runt origo är speciellt viktig. I denna cirkel kan man sammanfatta olika vinkelbegrepp samt de trigonometriska funktionerna cosinus och sinus. En vinkel ges av en punkt på enhetscirkeln, dess vinkelmått är sträckan längs cirkeln till punkten (1,0), cosinus för vinkeln är punktens x-komponent, sinus för vinkeln är y-komponenten av punkten. Funktionerna cosinus och sinus används alltså för att översätta från vinklar till sträckor. Om man är van att tänka på cosinus och sinus som förhållanden mellan sidorna i en rätvinklig triangel så är det viktigt att också fundera ordentligt på dessa funktioner i enhetscirkeln. Denna bild gör det lättare att förstå trigonometriska samband som periodicitet, trigonometriska ettan, samband för dubblering av vinkeln samt formler för derivator.
Att hantera och manipulera med trigonometriska uttryck är viktigt inom de flesta tillämpningar av matematiken. De avslutande avsnitten ger en grundlig övning på detta. Tidigare räknades geometrin till de viktigare momenenten inom matematikundervisningen. Under de senaste decennierna har geometrin minskats ner i såväl gymnasiets som i högskolans kurser. Men, för den som kommer att syssla med bilder eller grafik eller med konstruktioner och design (t ex CAD), så är goda kunskaper i geometri mycket värdefulla. Kunskaper i geometri är också väldigt bra att ha med sig ut i vardagslivet, där man ofta ställs inför geometriska problem och funderingar.
Så här lyckas du med Trigonometri
PS. Tycker du att innehållet i ett avsnitt känns väldigt bekant, så kan du testa att gå direkt till grundprovet och slutprovet. Du måste få alla rätt på ett prov, men kan göra om proven flera gånger, om du inte lyckas på första försöket. Det är ditt senaste resultat som visas i statistiken. |}
© Copyright 2007, math.se Materialet ovan ingår i kursen Förberedande kurs i matematik 1 som ges som preparandutbildning av ett flertal universitet och högskolor inom samarbetet math.se. Kursen ger högskolepoäng och berättigar till csn-bidrag. Förutom detta material ingår mentorstöd, examination via nätet samt tillgång till diskussionsforum. Kursstart sker löpande. Sök kursen Förberedande kurs i matematik 1 via math.se
|
|