Loading jsMath...

Facit

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 16 juli 2007 kl. 08.25 (redigera)
KTH.SE:u1zpa8nw (Diskussion | bidrag)

← Gå till föregående ändring
Versionen från 16 juli 2007 kl. 08.29 (redigera) (ogör)
KTH.SE:u1zpa8nw (Diskussion | bidrag)

Gå till nästa ändring →
Rad 343: Rad 343:
</tr> </tr>
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
 +</table>
 +</div>
 +==Övning 2.1:1==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">3x^2-3x</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">xy+x^2y-x^3y</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">-4x^2+x^2y^2</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d)</td>
 +<td class="ntext" width="33%">x^3y-x^2y+x^3y^2</td>
 +<td class="ntext">e)</td>
 +<td class="ntext" width="33%">x^2-14x+49</td>
 +<td class="ntext">f)</td>
 +<td class="ntext" width="33%">16y^2+40y+25</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">g)</td>
 +<td class="ntext" width="33%">9x^6-6x^3y^2+y^4</td>
 +<td class="ntext">h)</td>
 +<td class="ntext" width="33%">9x^{10}+30x^8+25x^6</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:2==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">-5x^2+20</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">10x-11</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">54x</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">81x^8-16</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">e)</td>
 +<td class="ntext" width="50%">2a^2+2b^2</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:3==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">(x+6)(x-6)</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">5(x+2)(x-2)</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">(x+3)^2</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d)</td>
 +<td class="ntext" width="33%">(x-5)^2</td>
 +<td class="ntext">e)</td>
 +<td class="ntext" width="33%">-2x(x+3)(x-3)</td>
 +<td class="ntext">f)</td>
 +<td class="ntext" width="33%">(4x+1)^2</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:4==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">5\, framf&ouml;r \,x^2\,, \,3\, framf&ouml;r \,x</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">2\, framf&ouml;r \,x^2\,, \,1\, framf&ouml;r \,x</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">\textrm{c) }</td>
 +<td class="ntext" width="100%">6\, framf&ouml;r \,x^2\,, \,2\, framf&ouml;r \,x</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:5==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">\displaystyle \frac{1}{1-x}</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">-\displaystyle \frac{1}{y(y+2)}</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">3(x-2)(x-1)</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">\displaystyle \frac{2(y+2)}{y^2+4}</td>
 +</tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:6==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">2y</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">\displaystyle\frac{-x+12}{(x-2)(x+3)}</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">\displaystyle\frac{b}{a(a-b)}</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">\displaystyle\frac{a(a+b)}{4b}</td>
 +</tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:7==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">\displaystyle \frac{4}{(x+3)(x+5)}</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">\displaystyle \frac{x^4-x^3+x^2+x-1}{x^2(x-1)}</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">\displaystyle \frac{ax(a+1-x)}{(a+1)^2}</td>
 +</tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:8==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">\displaystyle \frac{x}{(x+3)(x+1)}</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">\displaystyle \frac{2(x-3)}{x}</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">\displaystyle \frac{x+2}{2x+3}</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.2:1==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">x=1</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">x=6</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c) </td>
 +<td class="ntext" width="50%">x=-\displaystyle\frac{3}{2}</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">x=-\displaystyle\frac{13}{3}</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.2:2==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">x=1</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">x=\displaystyle\frac{5}{3}</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">x=2</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">x=-2</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.2:3==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">x=9</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">x=\displaystyle\frac{7}{5}</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c) </td>
 +<td class="ntext" width="100%">x=\displaystyle\frac{4}{5}</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d) </td>
 +<td class="ntext" width="100%">x=\displaystyle\frac{1}{2}</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:4==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td>a)</td>
 +<td width="100%">-2x+y=3</td>
 +</tr>
 +<tr align="left">
 +<td>b)</td>
 +<td width="100%">y=-\displaystyle\frac{3}{4}x+\frac{5}{4}</td>
 +</tr>
 +<tr><td height="5px"\></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:5==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">y=-3x+9</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">y=-3x+1</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="100%">y=3x+5</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d)</td>
 +<td class="ntext" width="100%">y=-\displaystyle \frac{1}{2}x+5</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">e)</td>
 +<td class="ntext" width="100%">k = \displaystyle\frac{8}{5}</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:6==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">\bigl(-\frac{5}{3},0\bigr)</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">(0,5)</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">\bigl(0,-\frac{6}{5}\bigr)</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">(12,-13)</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">e)</td>
 +<td class="ntext" width="50%">\bigl(-\frac{1}{4},\frac{3}{2}\bigr)</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:7==
 +<div class="svar">
 +<table width="100%">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_7a.gif‎]] </td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_7b.gif‎]] </td>
 +</tr><tr>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_7c.gif‎]] </td>
 +</tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:8==
 +<div class="svar">
 +<table width="100%">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_8a.gif‎]]</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_8b.gif‎]]</td>
 +</tr><tr>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_8c.gif‎]]</td>
 +</tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:9==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">4\, a.e.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">5\, a.e.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="100%">6\, a.e.</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +
 +==&Ouml;vning 2.3:1==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="25%">(x-1)^2-1</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="25%">(x+1)^2-2</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="25%">-(x-1)^2+6</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="25%">\bigl(x+\frac{5}{2}\bigr)^2-\frac{13}{4}</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:2==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr><td height="5px"/></tr>
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">\left\{ \eqalign{ x_1 &= 1 \cr x_2 &= 3\cr }\right.</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">\left\{ \eqalign{ y_1 &= -5 \cr y_2 &= 3\cr }\right.</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%"> saknar (reella) l&ouml;sning</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d)</td>
 +<td class="ntext" width="33%"> \left\{ \eqalign{ x_1 &= \textstyle\frac{1}{2}\cr x_2 &= \textstyle\frac{13}{2}\cr }\right.</td>
 +<td class="ntext">e)</td>
 +<td class="ntext" width="33%">\left\{ \eqalign{ x_1 &= -1 \cr x_2 &= \textstyle\frac{3}{5}\cr }\right.</td>
 +<td class="ntext">f)</td>
 +<td class="ntext" width="33%"> \left\{ \eqalign{ x_1 &= \textstyle\frac{4}{3}\cr x_2 &= 2\cr }\right.</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:3==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">\left\{ \eqalign{ x_1 &= 0 \cr x_2 & = -3\cr }\right.</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">\left\{ \eqalign{ x_1 &= 3 \cr x_2 & = -5\cr }\right. </td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">\left\{ \eqalign{ x_1 & = \textstyle\frac{2}{3} \cr x_2 & = -8\cr }\right. </td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">\left\{ \eqalign{ x_1 & = 0\cr x_2 & = 12\cr }\right. </td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">e)</td>
 +<td class="ntext" width="50%">\left\{ \eqalign{ x_1 & = -3 \cr x_2 & = 8\cr }\right. </td>
 +<td class="ntext">f)</td>
 +<td class="ntext" width="50%">\left\{ \eqalign{ x_1 & = 0 \cr x_2 & = 1 \cr x_3 & = 2 }\right. </td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:4==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">ax^2-ax-2a=0\,, där \,a\ne 0\, är en konstant.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">ax^2-2ax-2a=0\,, där \,a\ne 0\, är en konstant.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="100%">ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,, där \,a\ne 0\, är en konstant.</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:5==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">Exempelvis \ x^2+14x+49=0\,.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">3< x<4</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="100%">b=-5</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:6==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">0</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">-2</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">\displaystyle \frac{3}{4}</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:7==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">1</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">\displaystyle -\frac{7}{4}</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">saknar max</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:8==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td>Se lösningen i
 +webmaterialet när du loggat in till kursen.</td>
 +</tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:9==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">(-1,0)\ och \ (1,0)</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">(2,0)\ och \ (3,0)</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">(1,0)\ och \ (3,0)</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:10==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td>Se lösningen i webmaterialet när du loggat in till kursen</td>
 +</tr>
</table> </table>
</div> </div>

Versionen från 16 juli 2007 kl. 08.29

Övning 1.1:1

a) -7 b) 1
c) 11 d) 1

Övning 1.1:2

a) 0 b) -1
c) -25 d) -19

Övning 1.1:3

a) naturliga talen, heltalen, rationella talen b) heltalen, rationella talen c) naturliga talen, heltalen, rationella talen
d) heltalen, rationella talen e) heltalen, rationella talen f) naturliga talen, heltalen, rationella talen
g) rationella talen h) naturliga talen, heltalen, rationella talen i) irrationella talen
j) naturliga talen, heltalen, rationella talen k) irrationella talen l) irrationella talen

Övning 1.1:4

a) \displaystyle \frac{3}{5}<\frac{5}{3}<2<\frac{7}{3}
b) \displaystyle -\frac{1}{2}<-\frac{1}{3}<-\frac{3}{10}<-\frac{1}{5}
c) \displaystyle \frac{1}{2}<\frac{3}{5}<\frac{21}{34}<\frac{5}{8}<\frac{2}{3}

Övning 1.1:5

a) 1{,}167 b) 2{,}250 c) 0{,}286 d) 1{,}414

Övning 1.1:6

a) Talet är rationellt och lika med \,314/100 = 157/50\,.
b) Talet är rationellt och är lika med \,31413/9999 = 10471/3333\,.
c) Talet är rationellt och lika med \,1999/9990\,.
d) Talet är irrationellt.

Övning 1.2:1

a) \displaystyle \frac{93}{28} b) \displaystyle \frac{3}{35} c) \displaystyle -\frac{7}{30}
d) \displaystyle \frac{47}{60} e) \displaystyle \frac{47}{84}

Övning 1.2:2

a) \displaystyle {30} b) \displaystyle {8}
c) \displaystyle {84} d) \displaystyle {225}

Övning 1.2:3

a) \displaystyle \frac{19}{100} b) \displaystyle \frac{1}{240}

Övning 1.2:4

a) \displaystyle \frac{6}{7} b) \displaystyle \frac{16}{21} c) \displaystyle \frac{1}{6}

Övning 1.2:5

a) \displaystyle \frac{105}{4} b) -5 c) \displaystyle \frac{8}{55}

Övning 1.2:6

\displaystyle \frac{152}{35}

Övning 1.3:1

a) 72 b) 3 c) -125 d) \displaystyle \frac{27}{8}

Övning 1.3:2

a) 2^6 b) 2^{-2} c) 2^0

Övning 1.3:3

a) 3^{-1} b) 3^5 c) 3^4 d) 3^{-3} e) 3^{-3}

Övning 1.3:4

a) 4 b) 3 c) 625
d) 16 e) \displaystyle \frac{1}{3750}

Övning 1.3:5

a) 2 b) \displaystyle \frac{1}{2} c) 27
d) 2209 e) 9 f) \displaystyle \frac{25}{3}


Övning 1.3:6

a) 256^{1/3}>200^{1/3} b) 0{,}4^{-3}>0{,}5^{-3} c) 0{,}2^{5}>0{,}2^{7}
d) \bigl(5^{1/3}\bigr)^{4}>400^{1/3} e) 125^{1/2}>625^{1/3} f) 3^{40}>2^{56}

Övning 2.1:1

a) 3x^2-3x b) xy+x^2y-x^3y c) -4x^2+x^2y^2
d) x^3y-x^2y+x^3y^2 e) x^2-14x+49 f) 16y^2+40y+25
g) 9x^6-6x^3y^2+y^4 h) 9x^{10}+30x^8+25x^6

Övning 2.1:2

a) -5x^2+20 b) 10x-11
c) 54x d) 81x^8-16
e) 2a^2+2b^2

Övning 2.1:3

a) (x+6)(x-6) b) 5(x+2)(x-2) c) (x+3)^2
d) (x-5)^2 e) -2x(x+3)(x-3) f) (4x+1)^2

Övning 2.1:4

a) 5\, framför \,x^2\,, \,3\, framför \,x
b) 2\, framför \,x^2\,, \,1\, framför \,x
\textrm{c) } 6\, framför \,x^2\,, \,2\, framför \,x

Övning 2.1:5

a) \displaystyle \frac{1}{1-x} b) -\displaystyle \frac{1}{y(y+2)}
c) 3(x-2)(x-1) d) \displaystyle \frac{2(y+2)}{y^2+4}

Övning 2.1:6

a) 2y b) \displaystyle\frac{-x+12}{(x-2)(x+3)}
c) \displaystyle\frac{b}{a(a-b)} d) \displaystyle\frac{a(a+b)}{4b}

Övning 2.1:7

a) \displaystyle \frac{4}{(x+3)(x+5)} b) \displaystyle \frac{x^4-x^3+x^2+x-1}{x^2(x-1)} c) \displaystyle \frac{ax(a+1-x)}{(a+1)^2}

Övning 2.1:8

a) \displaystyle \frac{x}{(x+3)(x+1)} b) \displaystyle \frac{2(x-3)}{x} c) \displaystyle \frac{x+2}{2x+3}

Övning 2.2:1

a) x=1 b) x=6
c) x=-\displaystyle\frac{3}{2} d) x=-\displaystyle\frac{13}{3}

Övning 2.2:2

a) x=1 b) x=\displaystyle\frac{5}{3}
c) x=2 d) x=-2

Övning 2.2:3

a) x=9
b) x=\displaystyle\frac{7}{5}
c) x=\displaystyle\frac{4}{5}
d) x=\displaystyle\frac{1}{2}

Övning 2.2:4

a) -2x+y=3
b) y=-\displaystyle\frac{3}{4}x+\frac{5}{4}

Övning 2.2:5

a) y=-3x+9
b) y=-3x+1
c) y=3x+5
d) y=-\displaystyle \frac{1}{2}x+5
e) k = \displaystyle\frac{8}{5}

Övning 2.2:6

a) \bigl(-\frac{5}{3},0\bigr) b) (0,5)
c) \bigl(0,-\frac{6}{5}\bigr) d) (12,-13)
e) \bigl(-\frac{1}{4},\frac{3}{2}\bigr)

Övning 2.2:7

a) Bild:Svar_o2_2_7a.gif‎ b) Bild:Svar_o2_2_7b.gif‎
c) Bild:Svar_o2_2_7c.gif‎

Övning 2.2:8

a) Bild:Svar_o2_2_8a.gif‎ b) Bild:Svar_o2_2_8b.gif‎
c) Bild:Svar_o2_2_8c.gif‎

Övning 2.2:9

a) 4\, a.e.
b) 5\, a.e.
c) 6\, a.e.


Övning 2.3:1

a) (x-1)^2-1 b) (x+1)^2-2 c) -(x-1)^2+6 d) \bigl(x+\frac{5}{2}\bigr)^2-\frac{13}{4}

Övning 2.3:2

a) \left\{ \eqalign{ x_1 &= 1 \cr x_2 &= 3\cr }\right. b) \left\{ \eqalign{ y_1 &= -5 \cr y_2 &= 3\cr }\right. c) saknar (reella) lösning
d) \left\{ \eqalign{ x_1 &= \textstyle\frac{1}{2}\cr x_2 &= \textstyle\frac{13}{2}\cr }\right. e) \left\{ \eqalign{ x_1 &= -1 \cr x_2 &= \textstyle\frac{3}{5}\cr }\right. f) \left\{ \eqalign{ x_1 &= \textstyle\frac{4}{3}\cr x_2 &= 2\cr }\right.

Övning 2.3:3

a) \left\{ \eqalign{ x_1 &= 0 \cr x_2 & = -3\cr }\right. b) \left\{ \eqalign{ x_1 &= 3 \cr x_2 & = -5\cr }\right.
c) \left\{ \eqalign{ x_1 & = \textstyle\frac{2}{3} \cr x_2 & = -8\cr }\right. d) \left\{ \eqalign{ x_1 & = 0\cr x_2 & = 12\cr }\right.
e) \left\{ \eqalign{ x_1 & = -3 \cr x_2 & = 8\cr }\right. f) \left\{ \eqalign{ x_1 & = 0 \cr x_2 & = 1 \cr x_3 & = 2 }\right.

Övning 2.3:4

a) ax^2-ax-2a=0\,, där \,a\ne 0\, är en konstant.
b) ax^2-2ax-2a=0\,, där \,a\ne 0\, är en konstant.
c) ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,, där \,a\ne 0\, är en konstant.

Övning 2.3:5

a) Exempelvis \ x^2+14x+49=0\,.
b) 3< x<4
c) b=-5

Övning 2.3:6

a) 0 b) -2 c) \displaystyle \frac{3}{4}

Övning 2.3:7

a) 1 b) \displaystyle -\frac{7}{4} c) saknar max

Övning 2.3:8

Se lösningen i webmaterialet när du loggat in till kursen.

Övning 2.3:9

a) (-1,0)\ och \ (1,0) b) (2,0)\ och \ (3,0) c) (1,0)\ och \ (3,0)

Övning 2.3:10

Se lösningen i webmaterialet när du loggat in till kursen
Den här artikeln är hämtad från http://wiki.math.se/wikis/sf0600_0701/index.php/Facit
Personliga verktyg