Loading jsMath...

Facit

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 16 juli 2007 kl. 09.11 (redigera)
KTH.SE:u1zpa8nw (Diskussion | bidrag)

← Gå till föregående ändring
Versionen från 16 juli 2007 kl. 09.13 (redigera) (ogör)
KTH.SE:u1zpa8nw (Diskussion | bidrag)

Gå till nästa ändring →
Rad 15: Rad 15:
<td class="ntext" width="50%">1</td> <td class="ntext" width="50%">1</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 34: Rad 34:
<td class="ntext" width="50%">-19</td> <td class="ntext" width="50%">-19</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 41: Rad 41:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left" valign="top"> <tr align="left" valign="top">
<td class="ntext">a)</td> <td class="ntext">a)</td>
Rad 74: Rad 74:
<td class="ntext" width="33%">irrationella talen</td> <td class="ntext" width="33%">irrationella talen</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 93: Rad 93:
<td class="ntext" width="100%">\displaystyle \frac{1}{2}<\frac{3}{5}<\frac{21}{34}<\frac{5}{8}<\frac{2}{3}</td> <td class="ntext" width="100%">\displaystyle \frac{1}{2}<\frac{3}{5}<\frac{21}{34}<\frac{5}{8}<\frac{2}{3}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 110: Rad 110:
<td class="ntext" width="25%">1{,}414</td> <td class="ntext" width="25%">1{,}414</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 133: Rad 133:
<td class="ntext" width="100%">Talet är irrationellt.</td> <td class="ntext" width="100%">Talet är irrationellt.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 154: Rad 154:
<td class="ntext" width="33%">\displaystyle \frac{47}{84}</td> <td class="ntext" width="33%">\displaystyle \frac{47}{84}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 173: Rad 173:
<td class="ntext" width="50%">\displaystyle {225}</td> <td class="ntext" width="50%">\displaystyle {225}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 180: Rad 180:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext">a)</td> <td class="ntext">a)</td>
Rad 187: Rad 187:
<td class="ntext" width="50%">\displaystyle \frac{1}{240}</td> <td class="ntext" width="50%">\displaystyle \frac{1}{240}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 202: Rad 202:
<td class="ntext" width="33%">\displaystyle \frac{1}{6}</td> <td class="ntext" width="33%">\displaystyle \frac{1}{6}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 209: Rad 209:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext">a)</td> <td class="ntext">a)</td>
Rad 218: Rad 218:
<td class="ntext" width="33%">\displaystyle \frac{8}{55}</td> <td class="ntext" width="33%">\displaystyle \frac{8}{55}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 240: Rad 240:
<td class="ntext" width="25%">\displaystyle \frac{27}{8}</td> <td class="ntext" width="25%">\displaystyle \frac{27}{8}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 255: Rad 255:
<td class="ntext" width="33%">2^0</td> <td class="ntext" width="33%">2^0</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 274: Rad 274:
<td class="ntext" width="20%">3^{-3}</td> <td class="ntext" width="20%">3^{-3}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 295: Rad 295:
<td class="ntext" width="33%">\displaystyle \frac{1}{3750}</td> <td class="ntext" width="33%">\displaystyle \frac{1}{3750}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 318: Rad 318:
<td class="ntext" width="33%">\displaystyle \frac{25}{3}</td> <td class="ntext" width="33%">\displaystyle \frac{25}{3}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 342: Rad 342:
<td class="ntext" width="33%">3^{40}>2^{56}</td> <td class="ntext" width="33%">3^{40}>2^{56}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 370: Rad 370:
<td class="ntext" width="33%">9x^{10}+30x^8+25x^6</td> <td class="ntext" width="33%">9x^{10}+30x^8+25x^6</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 393: Rad 393:
<td class="ntext" width="50%">2a^2+2b^2</td> <td class="ntext" width="50%">2a^2+2b^2</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 416: Rad 416:
<td class="ntext" width="33%">(4x+1)^2</td> <td class="ntext" width="33%">(4x+1)^2</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 435: Rad 435:
<td class="ntext" width="100%">6\, framf&ouml;r \,x^2\,, \,2\, framf&ouml;r \,x</td> <td class="ntext" width="100%">6\, framf&ouml;r \,x^2\,, \,2\, framf&ouml;r \,x</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 500: Rad 500:
<td class="ntext" width="33%">\displaystyle \frac{x+2}{2x+3}</td> <td class="ntext" width="33%">\displaystyle \frac{x+2}{2x+3}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 519: Rad 519:
<td class="ntext" width="50%">x=-\displaystyle\frac{13}{3}</td> <td class="ntext" width="50%">x=-\displaystyle\frac{13}{3}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 538: Rad 538:
<td class="ntext" width="50%">x=-2</td> <td class="ntext" width="50%">x=-2</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 561: Rad 561:
<td class="ntext" width="100%">x=\displaystyle\frac{1}{2}</td> <td class="ntext" width="100%">x=\displaystyle\frac{1}{2}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 603: Rad 603:
<td class="ntext" width="100%">k = \displaystyle\frac{8}{5}</td> <td class="ntext" width="100%">k = \displaystyle\frac{8}{5}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 626: Rad 626:
<td class="ntext" width="50%">\bigl(-\frac{1}{4},\frac{3}{2}\bigr)</td> <td class="ntext" width="50%">\bigl(-\frac{1}{4},\frac{3}{2}\bigr)</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 675: Rad 675:
<td class="ntext" width="100%">6\, a.e.</td> <td class="ntext" width="100%">6\, a.e.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 693: Rad 693:
<td class="ntext" width="25%">\bigl(x+\frac{5}{2}\bigr)^2-\frac{13}{4}</td> <td class="ntext" width="25%">\bigl(x+\frac{5}{2}\bigr)^2-\frac{13}{4}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 700: Rad 700:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext">a)</td> <td class="ntext">a)</td>
Rad 717: Rad 717:
<td class="ntext" width="33%"> \left\{ \eqalign{ x_1 &= \textstyle\frac{4}{3}\cr x_2 &= 2\cr }\right.</td> <td class="ntext" width="33%"> \left\{ \eqalign{ x_1 &= \textstyle\frac{4}{3}\cr x_2 &= 2\cr }\right.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 742: Rad 742:
<td class="ntext" width="50%">\left\{ \eqalign{ x_1 & = 0 \cr x_2 & = 1 \cr x_3 & = 2 }\right. </td> <td class="ntext" width="50%">\left\{ \eqalign{ x_1 & = 0 \cr x_2 & = 1 \cr x_3 & = 2 }\right. </td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 761: Rad 761:
<td class="ntext" width="100%">ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,, där \,a\ne 0\, är en konstant.</td> <td class="ntext" width="100%">ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,, där \,a\ne 0\, är en konstant.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 780: Rad 780:
<td class="ntext" width="100%">b=-5</td> <td class="ntext" width="100%">b=-5</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 795: Rad 795:
<td class="ntext" width="33%">\displaystyle \frac{3}{4}</td> <td class="ntext" width="33%">\displaystyle \frac{3}{4}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 810: Rad 810:
<td class="ntext" width="33%">saknar max</td> <td class="ntext" width="33%">saknar max</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 835: Rad 835:
<td class="ntext" width="33%">(1,0)\ och \ (3,0)</td> <td class="ntext" width="33%">(1,0)\ och \ (3,0)</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 860: Rad 860:
<td class="ntext" width="25%">3^{1/4}</td> <td class="ntext" width="25%">3^{1/4}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 887: Rad 887:
<td></td> <td></td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 906: Rad 906:
<td class="ntext" width="50%">2-\sqrt{2}</td> <td class="ntext" width="50%">2-\sqrt{2}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 925: Rad 925:
<td class="ntext" width="50%">2\sqrt{3}</td> <td class="ntext" width="50%">2\sqrt{3}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 942: Rad 942:
<td class="ntext" width="25%">\displaystyle \frac{\sqrt{17}+\sqrt{13}}{4}</td> <td class="ntext" width="25%">\displaystyle \frac{\sqrt{17}+\sqrt{13}}{4}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 961: Rad 961:
<td class="ntext" width="50%">\displaystyle \frac{5\sqrt{3}+7\sqrt{2}-\sqrt{6}-12}{23}</td> <td class="ntext" width="50%">\displaystyle \frac{5\sqrt{3}+7\sqrt{2}-\sqrt{6}-12}{23}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 976: Rad 976:
<td class="ntext" width="33%">\sqrt{17}</td> <td class="ntext" width="33%">\sqrt{17}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 995: Rad 995:
<td class="ntext" width="50%">\sqrt[\scriptstyle3]2\cdot3 > \sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3</td> <td class="ntext" width="50%">\sqrt[\scriptstyle3]2\cdot3 > \sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 002: Rad 1 002:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext" width="100%">x=5</td> <td class="ntext" width="100%">x=5</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 013: Rad 1 013:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext" width="100%">x=1</td> <td class="ntext" width="100%">x=1</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 024: Rad 1 024:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext" width="100%">\left \{ \eqalign{ x_1 & = 3 \cr x_2 & = 4\cr } \right.</td> <td class="ntext" width="100%">\left \{ \eqalign{ x_1 & = 3 \cr x_2 & = 4\cr } \right.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 035: Rad 1 035:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext" width="100%">Saknar l&ouml;sning.</td> <td class="ntext" width="100%">Saknar l&ouml;sning.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 046: Rad 1 046:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext" width="100%">x=1</td> <td class="ntext" width="100%">x=1</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 057: Rad 1 057:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext" width="100%">x=\displaystyle\frac{5}{4}</td> <td class="ntext" width="100%">x=\displaystyle\frac{5}{4}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 080: Rad 1 080:
<td class="ntext" width="50%">x=4</td> <td class="ntext" width="50%">x=4</td>
</tr> </tr>
-<tr><td height="5px"/></tr> +
</table> </table>
</div> </div>
Rad 1 107: Rad 1 107:
<td class="ntext" width="25%">-2</td> <td class="ntext" width="25%">-2</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 136: Rad 1 136:
<td class="ntext" width="33%">\displaystyle \frac{5}{2}</td> <td class="ntext" width="33%">\displaystyle \frac{5}{2}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 151: Rad 1 151:
<td class="ntext" width="33%">-\displaystyle \frac{1}{2}\lg{3}</td> <td class="ntext" width="33%">-\displaystyle \frac{1}{2}\lg{3}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 174: Rad 1 174:
<td class="ntext" width="33%">e^2</td> <td class="ntext" width="33%">e^2</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 208: Rad 1 208:
<td class="ntext">c)</td> <td class="ntext">c)</td>
<td class="ntext" width="33%">x=\displaystyle\frac{\ln 7 - \ln 3}{1-\ln 2}</td> <td class="ntext" width="33%">x=\displaystyle\frac{\ln 7 - \ln 3}{1-\ln 2}</td>
-<tr><td height="5px"/></tr>+ 
</tr> </tr>
</table> </table>
Rad 1 224: Rad 1 224:
<td class="ntext" width="33%">Saknar l&ouml;sning</td> <td class="ntext" width="33%">Saknar l&ouml;sning</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 241: Rad 1 241:
<td class="ntext" width="50%">x=1</td> <td class="ntext" width="50%">x=1</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 259: Rad 1 259:
<td class="ntext" width="50%">2910^\circ\ och \ \displaystyle \frac{97\pi}{6} \textrm{ rad}</td> <td class="ntext" width="50%">2910^\circ\ och \ \displaystyle \frac{97\pi}{6} \textrm{ rad}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 276: Rad 1 276:
<td class="ntext" width="25%">\displaystyle \frac{3\pi}{2}\textrm{ rad}</td> <td class="ntext" width="25%">\displaystyle \frac{3\pi}{2}\textrm{ rad}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 291: Rad 1 291:
<td class="ntext" width="33%">x=15</td> <td class="ntext" width="33%">x=15</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 310: Rad 1 310:
<td class="ntext" width="100%">(2,0)</td> <td class="ntext" width="100%">(2,0)</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 325: Rad 1 325:
<td class="ntext" width="100%">(x-2)^2+(y+1)^2=13</td> <td class="ntext" width="100%">(x-2)^2+(y+1)^2=13</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 342: Rad 1 342:
<td class="ntext" width="50%">En cirkel med radie \frac{1}{3}\sqrt 10 och medelpunkt i punkten (1/3, -7/3).</td> <td class="ntext" width="50%">En cirkel med radie \frac{1}{3}\sqrt 10 och medelpunkt i punkten (1/3, -7/3).</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 363: Rad 1 363:
<td class="ntext" width="50%">Endast punkten (1, -1). </td> <td class="ntext" width="50%">Endast punkten (1, -1). </td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 370: Rad 1 370:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext" width="100%"> <td class="ntext" width="100%">
\displaystyle \frac{10}{\pi}\textrm{ varv }\approx 3,2 \textrm{ varv} </td> \displaystyle \frac{10}{\pi}\textrm{ varv }\approx 3,2 \textrm{ varv} </td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 382: Rad 1 382:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext" width="100%">\displaystyle \frac{32\pi}{3} \textrm{ cm}^2 \approx 33,5 \textrm{ cm}^2</td> <td class="ntext" width="100%">\displaystyle \frac{32\pi}{3} \textrm{ cm}^2 \approx 33,5 \textrm{ cm}^2</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
Rad 1 394: Rad 1 394:
<div class="ovning"> <div class="ovning">
<table width="100%"> <table width="100%">
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext" width="100%">x=9 dm</td> <td class="ntext" width="100%">x=9 dm</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 424: Rad 1 424:
<td class="ntext" width="50%">x=\displaystyle\frac{19}{\tan {50 ^\circ}} \approx 15{,}9</td> <td class="ntext" width="50%">x=\displaystyle\frac{19}{\tan {50 ^\circ}} \approx 15{,}9</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 449: Rad 1 449:
<td class="ntext" width="50%">\sin \displaystyle\frac{v}{2}=\displaystyle\frac{1}{3}</td> <td class="ntext" width="50%">\sin \displaystyle\frac{v}{2}=\displaystyle\frac{1}{3}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 472: Rad 1 472:
<td class="ntext" width="33%">\displaystyle \frac{\sqrt{3}}{2}</td> <td class="ntext" width="33%">\displaystyle \frac{\sqrt{3}}{2}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 495: Rad 1 495:
<td class="ntext" width="33%">\sqrt{3}</td> <td class="ntext" width="33%">\sqrt{3}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 512: Rad 1 512:
<td class="ntext" width="25%">-1</td> <td class="ntext" width="25%">-1</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 522: Rad 1 522:
<td class="ntext" width="100%">x= \sqrt{3}-1</td> <td class="ntext" width="100%">x= \sqrt{3}-1</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 532: Rad 1 532:
<td class="ntext" width="100%">Älvens bredd är \ \displaystyle\frac{100}{\sqrt{3}-1} m \approx 136{,}6 m.</td> <td class="ntext" width="100%">Älvens bredd är \ \displaystyle\frac{100}{\sqrt{3}-1} m \approx 136{,}6 m.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 543: Rad 1 543:
<td class="ntext" width="100%">\ell\cos \gamma=a \cos \alpha - b\cos \beta </td> <td class="ntext" width="100%">\ell\cos \gamma=a \cos \alpha - b\cos \beta </td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 553: Rad 1 553:
<td class="ntext" width="100%">Avståndet är \ \sqrt{205-48\sqrt{3}} \approx 11{,}0 km.</td> <td class="ntext" width="100%">Avståndet är \ \sqrt{205-48\sqrt{3}} \approx 11{,}0 km.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 580: Rad 1 580:
<td class="ntext" width="50%">v=\displaystyle \frac{3\pi}{5}</td> <td class="ntext" width="50%">v=\displaystyle \frac{3\pi}{5}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 605: Rad 1 605:
<td class="ntext" width="50%">\displaystyle \frac{\sqrt{3}}{2}\sqrt{1-a^2}+\displaystyle \frac{1}{2}\cdot a </td> <td class="ntext" width="50%">\displaystyle \frac{\sqrt{3}}{2}\sqrt{1-a^2}+\displaystyle \frac{1}{2}\cdot a </td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 630: Rad 1 630:
<td class="ntext" width="50%">b\cdot\displaystyle \frac{1}{2}+\sqrt{1-b^2}\cdot\displaystyle \frac{\sqrt{3}}{2}</td> <td class="ntext" width="50%">b\cdot\displaystyle \frac{1}{2}+\sqrt{1-b^2}\cdot\displaystyle \frac{\sqrt{3}}{2}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 640: Rad 1 640:
<td class="ntext" width="100%">\cos{v}=\displaystyle \frac{2\sqrt{6}}{7}\quad och \quad\tan{v}=\displaystyle \frac{5}{2\sqrt{6}}\,.</td> <td class="ntext" width="100%">\cos{v}=\displaystyle \frac{2\sqrt{6}}{7}\quad och \quad\tan{v}=\displaystyle \frac{5}{2\sqrt{6}}\,.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 651: Rad 1 651:
<td class="ntext" width="100%">\sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad och \quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,.</td> <td class="ntext" width="100%">\sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad och \quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext">b)</td> <td class="ntext">b)</td>
<td class="ntext" width="100%">\cos{v}=-\displaystyle \frac{\sqrt{91}}{10}\quad och \quad\tan{v}=-\displaystyle \frac{3}{\sqrt{91}}\,.</td> <td class="ntext" width="100%">\cos{v}=-\displaystyle \frac{\sqrt{91}}{10}\quad och \quad\tan{v}=-\displaystyle \frac{3}{\sqrt{91}}\,.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
<tr align="left"> <tr align="left">
<td class="ntext">c)</td> <td class="ntext">c)</td>
<td class="ntext" width="50%">\sin{v}=-\displaystyle \frac{3}{\sqrt{10}}\quad och \quad\cos{v}=-\displaystyle \frac{1}{\sqrt{10}}\,.</td> <td class="ntext" width="50%">\sin{v}=-\displaystyle \frac{3}{\sqrt{10}}\quad och \quad\cos{v}=-\displaystyle \frac{1}{\sqrt{10}}\,.</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 676: Rad 1 676:
<td class="ntext" width="100%">\sin{(x+y)}=\displaystyle \frac{3\sqrt{21}+8}{25}</td> <td class="ntext" width="100%">\sin{(x+y)}=\displaystyle \frac{3\sqrt{21}+8}{25}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 687: Rad 1 687:
du loggat in till kursen</td> du loggat in till kursen</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 698: Rad 1 698:
du loggat in till kursen</td> du loggat in till kursen</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 727: Rad 1 727:
<td class="ntext" width="50%">\displaystyle v=\frac{5\pi}{6}\,, \,\displaystyle v=\frac{11\pi}{6}</td> <td class="ntext" width="50%">\displaystyle v=\frac{5\pi}{6}\,, \,\displaystyle v=\frac{11\pi}{6}</td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 771: Rad 1 771:
</td> </td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 810: Rad 1 810:
</td> </td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 848: Rad 1 848:
</td> </td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>
Rad 1 877: Rad 1 877:
</td> </td>
</tr> </tr>
-<tr><td height="5px"/></tr>+ 
</table> </table>
</div> </div>

Versionen från 16 juli 2007 kl. 09.13

Svar 1.1:1

a) -7 b) 1
c) 11 d) 1

Svar 1.1:2

a) 0 b) -1
c) -25 d) -19

Svar 1.1:3

a) naturliga talen, heltalen, rationella talen b) heltalen, rationella talen c) naturliga talen, heltalen, rationella talen
d) heltalen, rationella talen e) heltalen, rationella talen f) naturliga talen, heltalen, rationella talen
g) rationella talen h) naturliga talen, heltalen, rationella talen i) irrationella talen
j) naturliga talen, heltalen, rationella talen k) irrationella talen l) irrationella talen

Svar 1.1:4

a) \displaystyle \frac{3}{5}<\frac{5}{3}<2<\frac{7}{3}
b) \displaystyle -\frac{1}{2}<-\frac{1}{3}<-\frac{3}{10}<-\frac{1}{5}
c) \displaystyle \frac{1}{2}<\frac{3}{5}<\frac{21}{34}<\frac{5}{8}<\frac{2}{3}

Svar 1.1:5

a) 1{,}167 b) 2{,}250 c) 0{,}286 d) 1{,}414

Svar 1.1:6

a) Talet är rationellt och lika med \,314/100 = 157/50\,.
b) Talet är rationellt och är lika med \,31413/9999 = 10471/3333\,.
c) Talet är rationellt och lika med \,1999/9990\,.
d) Talet är irrationellt.

Svar 1.2:1

a) \displaystyle \frac{93}{28} b) \displaystyle \frac{3}{35} c) \displaystyle -\frac{7}{30}
d) \displaystyle \frac{47}{60} e) \displaystyle \frac{47}{84}

Svar 1.2:2

a) \displaystyle {30} b) \displaystyle {8}
c) \displaystyle {84} d) \displaystyle {225}

Svar 1.2:3

a) \displaystyle \frac{19}{100} b) \displaystyle \frac{1}{240}

Svar 1.2:4

a) \displaystyle \frac{6}{7} b) \displaystyle \frac{16}{21} c) \displaystyle \frac{1}{6}

Svar 1.2:5

a) \displaystyle \frac{105}{4} b) -5 c) \displaystyle \frac{8}{55}

Svar 1.2:6

\displaystyle \frac{152}{35}

Svar 1.3:1

a) 72 b) 3 c) -125 d) \displaystyle \frac{27}{8}

Svar 1.3:2

a) 2^6 b) 2^{-2} c) 2^0

Svar 1.3:3

a) 3^{-1} b) 3^5 c) 3^4 d) 3^{-3} e) 3^{-3}

Svar 1.3:4

a) 4 b) 3 c) 625
d) 16 e) \displaystyle \frac{1}{3750}

Svar 1.3:5

a) 2 b) \displaystyle \frac{1}{2} c) 27
d) 2209 e) 9 f) \displaystyle \frac{25}{3}


Svar 1.3:6

a) 256^{1/3}>200^{1/3} b) 0{,}4^{-3}>0{,}5^{-3} c) 0{,}2^{5}>0{,}2^{7}
d) \bigl(5^{1/3}\bigr)^{4}>400^{1/3} e) 125^{1/2}>625^{1/3} f) 3^{40}>2^{56}

Svar 2.1:1

a) 3x^2-3x b) xy+x^2y-x^3y c) -4x^2+x^2y^2
d) x^3y-x^2y+x^3y^2 e) x^2-14x+49 f) 16y^2+40y+25
g) 9x^6-6x^3y^2+y^4 h) 9x^{10}+30x^8+25x^6

Svar 2.1:2

a) -5x^2+20 b) 10x-11
c) 54x d) 81x^8-16
e) 2a^2+2b^2

Svar 2.1:3

a) (x+6)(x-6) b) 5(x+2)(x-2) c) (x+3)^2
d) (x-5)^2 e) -2x(x+3)(x-3) f) (4x+1)^2

Svar 2.1:4

a) 5\, framför \,x^2\,, \,3\, framför \,x
b) 2\, framför \,x^2\,, \,1\, framför \,x
\textrm{c) } 6\, framför \,x^2\,, \,2\, framför \,x

Svar 2.1:5

a) \displaystyle \frac{1}{1-x} b) -\displaystyle \frac{1}{y(y+2)}
c) 3(x-2)(x-1) d) \displaystyle \frac{2(y+2)}{y^2+4}

Svar 2.1:6

a) 2y b) \displaystyle\frac{-x+12}{(x-2)(x+3)}
c) \displaystyle\frac{b}{a(a-b)} d) \displaystyle\frac{a(a+b)}{4b}

Svar 2.1:7

a) \displaystyle \frac{4}{(x+3)(x+5)} b) \displaystyle \frac{x^4-x^3+x^2+x-1}{x^2(x-1)} c) \displaystyle \frac{ax(a+1-x)}{(a+1)^2}

Svar 2.1:8

a) \displaystyle \frac{x}{(x+3)(x+1)} b) \displaystyle \frac{2(x-3)}{x} c) \displaystyle \frac{x+2}{2x+3}

Svar 2.2:1

a) x=1 b) x=6
c) x=-\displaystyle\frac{3}{2} d) x=-\displaystyle\frac{13}{3}

Svar 2.2:2

a) x=1 b) x=\displaystyle\frac{5}{3}
c) x=2 d) x=-2

Svar 2.2:3

a) x=9
b) x=\displaystyle\frac{7}{5}
c) x=\displaystyle\frac{4}{5}
d) x=\displaystyle\frac{1}{2}

Svar 2.2:4

a) -2x+y=3
b) y=-\displaystyle\frac{3}{4}x+\frac{5}{4}

Svar 2.2:5

a) y=-3x+9
b) y=-3x+1
c) y=3x+5
d) y=-\displaystyle \frac{1}{2}x+5
e) k = \displaystyle\frac{8}{5}

Svar 2.2:6

a) \bigl(-\frac{5}{3},0\bigr) b) (0,5)
c) \bigl(0,-\frac{6}{5}\bigr) d) (12,-13)
e) \bigl(-\frac{1}{4},\frac{3}{2}\bigr)

Svar 2.2:7

a) Bild:Svar_o2_2_7a.gif‎ b) Bild:Svar_o2_2_7b.gif‎
c) Bild:Svar_o2_2_7c.gif‎

Svar 2.2:8

a) Bild:Svar_o2_2_8a.gif‎ b) Bild:Svar_o2_2_8b.gif‎
c) Bild:Svar_o2_2_8c.gif‎

Svar 2.2:9

a) 4\, a.e.
b) 5\, a.e.
c) 6\, a.e.


Svar 2.3:1

a) (x-1)^2-1 b) (x+1)^2-2 c) -(x-1)^2+6 d) \bigl(x+\frac{5}{2}\bigr)^2-\frac{13}{4}

Svar 2.3:2

a) \left\{ \eqalign{ x_1 &= 1 \cr x_2 &= 3\cr }\right. b) \left\{ \eqalign{ y_1 &= -5 \cr y_2 &= 3\cr }\right. c) saknar (reella) lösning
d) \left\{ \eqalign{ x_1 &= \textstyle\frac{1}{2}\cr x_2 &= \textstyle\frac{13}{2}\cr }\right. e) \left\{ \eqalign{ x_1 &= -1 \cr x_2 &= \textstyle\frac{3}{5}\cr }\right. f) \left\{ \eqalign{ x_1 &= \textstyle\frac{4}{3}\cr x_2 &= 2\cr }\right.

Svar 2.3:3

a) \left\{ \eqalign{ x_1 &= 0 \cr x_2 & = -3\cr }\right. b) \left\{ \eqalign{ x_1 &= 3 \cr x_2 & = -5\cr }\right.
c) \left\{ \eqalign{ x_1 & = \textstyle\frac{2}{3} \cr x_2 & = -8\cr }\right. d) \left\{ \eqalign{ x_1 & = 0\cr x_2 & = 12\cr }\right.
e) \left\{ \eqalign{ x_1 & = -3 \cr x_2 & = 8\cr }\right. f) \left\{ \eqalign{ x_1 & = 0 \cr x_2 & = 1 \cr x_3 & = 2 }\right.

Svar 2.3:4

a) ax^2-ax-2a=0\,, där \,a\ne 0\, är en konstant.
b) ax^2-2ax-2a=0\,, där \,a\ne 0\, är en konstant.
c) ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,, där \,a\ne 0\, är en konstant.

Svar 2.3:5

a) Exempelvis \ x^2+14x+49=0\,.
b) 3< x<4
c) b=-5

Svar 2.3:6

a) 0 b) -2 c) \displaystyle \frac{3}{4}

Svar 2.3:7

a) 1 b) \displaystyle -\frac{7}{4} c) saknar max

Svar 2.3:8

Se lösningen i webmaterialet när du loggat in till kursen.

Svar 2.3:9

a) (-1,0)\ och \ (1,0) b) (2,0)\ och \ (3,0) c) (1,0)\ och \ (3,0)

Svar 2.3:10

Se lösningen i webmaterialet när du loggat in till kursen

Svar 3.1:1

a) 2^{1/2} b) 7^{5/2} c) 3^{4/3} d) 3^{1/4}

Svar 3.1:2

a) 3 b) 3 c) ej definierad d) 5^{11/6}
e) 12 f) 2 g) -5

Svar 3.1:3

a) 3 b) \displaystyle \frac{4\sqrt{3}}{3}
c) 2\sqrt{5} d) 2-\sqrt{2}

Svar 3.1:4

a) 0{,}4 b) 0{,}3
c) -4\sqrt{2} d) 2\sqrt{3}

Svar 3.1:5

a) \displaystyle \frac{\sqrt{3}}{3} b) \displaystyle \frac{7^{2/3}}{7} c) 3-\sqrt{7} d) \displaystyle \frac{\sqrt{17}+\sqrt{13}}{4}

Svar 3.1:6

a) 6+2\sqrt{2}+3\sqrt{5}+\sqrt{10} b) -\displaystyle \frac{5+4\sqrt{3}}{23}
c) \displaystyle \frac{2}{3}\sqrt{6}+\displaystyle \frac{2}{3}\sqrt{3}-\displaystyle \frac{2}{5}\sqrt{10}-\displaystyle \frac{2}{5}\sqrt{5} d) \displaystyle \frac{5\sqrt{3}+7\sqrt{2}-\sqrt{6}-12}{23}

Svar 3.1:7

a) \sqrt{5}-\sqrt{7} b) -\sqrt{35} c) \sqrt{17}

Svar 3.1:8

a) \sqrt[\scriptstyle3]6 > \sqrt[\scriptstyle3]5 b) 7 > \sqrt7
c) \sqrt7 > 2{,}5 d) \sqrt[\scriptstyle3]2\cdot3 > \sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3

Svar 3.2:1

x=5

Svar 3.2:2

x=1

Svar 3.2:3

\left \{ \eqalign{ x_1 & = 3 \cr x_2 & = 4\cr } \right.

Svar 3.2:4

Saknar lösning.

Svar 3.2:5

x=1

Svar 3.2:6

x=\displaystyle\frac{5}{4}

Svar 3.3:1

a) x=3 b) x=-1
c) x=-2 d) x=4

Svar 3.3:2

a) -1 b) 4 c) -3 d) 0
e) 2 f) 3 g) 10 h) -2

Svar 3.3:3

a) 3 b) -\displaystyle \frac{1}{2} c) -3
d) \displaystyle \frac{7}{3} e) 4 f) -2
g) 1 h) \displaystyle \frac{5}{2}

Svar 3.3:4

a) 1 b) 0 c) -\displaystyle \frac{1}{2}\lg{3}

Svar 3.3:5

a) 5 b) 0 c) 0
d) 0 e) -2 f) e^2

Svar 3.3:6

a) 1{,}262
b) 1{,}663
c) 4{,}762

Svar 3.4:1

a) x=\ln 13 b) x=\displaystyle\frac{\ln 2 - \ln 13}{1+\ln 3} c) x=\displaystyle\frac{\ln 7 - \ln 3}{1-\ln 2}

Svar 3.4:2

a) \left\{ \eqalign{ x_1&=\sqrt2 \cr x_2&=-\sqrt2 } \right. b) x=\ln \left(\displaystyle\frac{\sqrt17}{2}-\frac{1}{2}\right) c) Saknar lösning

Svar 3.4:3

a) x=-\,\displaystyle\frac{1}{\ln{2}}\pm\sqrt{\left(\displaystyle\frac{1}{\ln{2}}\right)^2-1} b) x=\displaystyle \frac{5}{2}
c) x=1

Svar 4.1:1

a) 90^\circ\ och \ \displaystyle \frac{\pi}{2} \textrm{ rad} b) 135^\circ\ och \ \displaystyle \frac{3\pi}{4} \textrm{ rad}
c) -240^\circ\ och \ \displaystyle -\frac{4\pi}{3} \textrm{ rad} d) 2910^\circ\ och \ \displaystyle \frac{97\pi}{6} \textrm{ rad}

Svar 4.1:2

a) \displaystyle \frac{\pi}{4}\textrm{ rad} b) \displaystyle \frac{3\pi}{4}\textrm{ rad} c) -\displaystyle \frac{7\pi}{20}\textrm{ rad} d) \displaystyle \frac{3\pi}{2}\textrm{ rad}

Svar 4.1:3

a) x=50 b) x=5 c) x=15

Svar 4.1:4

a) 5 \textrm{ l.e.}
b) \sqrt{61} \textrm{ l.e.}
c) (2,0)

Svar 4.1:5

a) (x-1)^2+(y-2)^2=4
b) (x-2)^2+(y+1)^2=13

Svar 4.1:6

a) En cirkel med radie 3 och medelpunkt i origo. b) En cirkel med radie \sqrt 3 och medelpunkt i punkten (1, 2).
c) En cirkel med radie \frac{1}{3}\sqrt 10 och medelpunkt i punkten (1/3, -7/3).

Svar 4.1:7

a) En cirkel med medelpunkt (-1, 1) och radie \sqrt 3. b) En cirkel med medelpunkt (0, -2) och radie 2.
c) En cirkel med medelpunkt (1, -3) och radie \sqrt 7.
d) Endast punkten (1, -1).

Svar 4.1:8

\displaystyle \frac{10}{\pi}\textrm{ varv }\approx 3,2 \textrm{ varv}

Svar 4.1:9

\displaystyle \frac{32\pi}{3} \textrm{ cm}^2 \approx 33,5 \textrm{ cm}^2

Svar 4.1:10

x=9 dm

Svar 4.2:1

Facit till alla delfrågor

a) x=13\cdot\tan {27 ^\circ} \approx 6{,}62 b) x=25\cdot\cos {32 ^\circ} \approx 21{,}2
c) x=\displaystyle\frac{14}{\tan {40 ^\circ}} \approx 16{,}7 d) x=\displaystyle\frac{16}{\cos {20 ^\circ}} \approx 17{,}0
e) x=\displaystyle\frac{11}{\sin {35 ^\circ}} \approx 19{,}2 f) x=\displaystyle\frac{19}{\tan {50 ^\circ}} \approx 15{,}9

Svar 4.2:2

a) \tan v=\displaystyle\frac{2}{5} b) \sin v=\displaystyle\frac{7}{11}
c) \cos v=\displaystyle\frac{5}{7} d) \sin v=\displaystyle\frac{3}{5}
e) v=30 ^\circ f) \sin \displaystyle\frac{v}{2}=\displaystyle\frac{1}{3}

Svar 4.2:3

a) -1 b) 1 c) 0
d) 0 e) \displaystyle \frac{1}{\sqrt{2}} f) \displaystyle \frac{\sqrt{3}}{2}

Svar 4.2:4

a) \displaystyle \frac{\sqrt{3}}{2} b) \displaystyle \frac{1}{2} c) -1
d) 0 e) \displaystyle \frac{1}{\sqrt{3}} f) \sqrt{3}

Svar 4.2:5

a) -\displaystyle \frac{1}{\sqrt{2}} b) 1 c) \displaystyle \frac{\sqrt{3}}{2} d) -1

Svar 4.2:6

x= \sqrt{3}-1

Svar 4.2:7

Älvens bredd är \ \displaystyle\frac{100}{\sqrt{3}-1} m \approx 136{,}6 m.


Svar 4.2:8

\ell\cos \gamma=a \cos \alpha - b\cos \beta

Svar 4.2:9

Avståndet är \ \sqrt{205-48\sqrt{3}} \approx 11{,}0 km.

Svar 4.3:1

a) v = \displaystyle \frac{9\pi}{5} b) v = \displaystyle \frac{6\pi}{7} c) v = \displaystyle \frac{9\pi}{7}

Svar 4.3:2

a) v=\displaystyle \frac{\pi}{2} b) v=\displaystyle \frac{3\pi}{5}

Svar 4.3:3

a) -a b) a
c) \sqrt{1-a^2} d) \sqrt{1-a^2}
e) -a f) \displaystyle \frac{\sqrt{3}}{2}\sqrt{1-a^2}+\displaystyle \frac{1}{2}\cdot a

Svar 4.3:4

a) 1-b^2 b) \sqrt{1-b^2}
c) 2b\sqrt{1-b^2} d) 2b^2-1
e) \sqrt{1-b^2}\cdot\displaystyle \frac{1}{\sqrt{2}} + b\cdot \displaystyle \frac{1}{\sqrt{2}} f) b\cdot\displaystyle \frac{1}{2}+\sqrt{1-b^2}\cdot\displaystyle \frac{\sqrt{3}}{2}

Svar 4.3:5

\cos{v}=\displaystyle \frac{2\sqrt{6}}{7}\quad och \quad\tan{v}=\displaystyle \frac{5}{2\sqrt{6}}\,.

Svar 4.3:6

a) \sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad och \quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,.
b) \cos{v}=-\displaystyle \frac{\sqrt{91}}{10}\quad och \quad\tan{v}=-\displaystyle \frac{3}{\sqrt{91}}\,.
c) \sin{v}=-\displaystyle \frac{3}{\sqrt{10}}\quad och \quad\cos{v}=-\displaystyle \frac{1}{\sqrt{10}}\,.

Svar 4.3:7

a) \sin{(x+y)}=\displaystyle \frac{4\sqrt{2}+\sqrt{5}}{9}
b) \sin{(x+y)}=\displaystyle \frac{3\sqrt{21}+8}{25}

Svar 4.3:8

Se lösningen i webmaterialet när du loggat in till kursen

Svar 4.3:9

Se lösningen i webmaterialet när du loggat in till kursen

Svar 4.4:1

a) \displaystyle v=\frac{\pi}{6}\,, \,\displaystyle v=\frac{5\pi}{6} b) \displaystyle v=\frac{\pi}{3}\,, \,\displaystyle v=\frac{5\pi}{3}
c) \displaystyle v=\frac{\pi}{2} d) \displaystyle v=\frac{\pi}{4}\,, \,\displaystyle v=\frac{5\pi}{4}
e) lösning saknas f) \displaystyle v=\frac{11\pi}{6}\,, \,\displaystyle v=\frac{7\pi}{6}
g) \displaystyle v=\frac{5\pi}{6}\,, \,\displaystyle v=\frac{11\pi}{6}

Svar 4.4:2

a)

\left\{\eqalign{ x&=\displaystyle\frac{\pi}{3}+2n\pi\cr x&=\displaystyle\frac{2\pi}{3}+2n\pi } \right.

b)

\left\{\eqalign{ x&=\displaystyle\frac{\pi}{3}+2n\pi\cr x&=\displaystyle\frac{5\pi}{3}+2n\pi } \right.

c) x=n\pi
d)

\left\{\eqalign{ x&=\displaystyle\frac{\pi}{20}+\displaystyle\frac{2n\pi}{5}\cr x&=\displaystyle\frac{3\pi}{20}+\displaystyle\frac{2n\pi}{5} } \right.

e)

\left\{\eqalign{ x&=\displaystyle\frac{\pi}{30}+\displaystyle\frac{2n\pi}{5}\cr x&=\displaystyle\frac{\pi}{6}+\displaystyle\frac{2n\pi}{5}} \right.

f)

\left\{\eqalign{ x&=\displaystyle\frac{\pi}{4}+\displaystyle\frac{2n\pi}{3}\cr x&=\displaystyle\frac{5\pi}{12}+\displaystyle\frac{2n\pi}{3}} \right.

Svar 4.4:3

a)

\left\{\eqalign{ x&=\displaystyle\frac{\pi}{6}+2n\pi\cr x&=\displaystyle\frac{11\pi}{6}+2n\pi }\right.

b)

\left\{\eqalign{ x&=\displaystyle\frac{\pi}{5}+2n\pi\cr x&=\displaystyle\frac{4\pi}{5}+2n\pi }\right.

c)

\left\{\eqalign{ x&=25^\circ + n\cdot 360^\circ\cr x&=75^\circ + n\cdot 360^\circ }\right.

d)

\left\{\eqalign{ x&=5^\circ + n \cdot 120^\circ \cr x&= 55^\circ + n \cdot 120^\circ }\right.

Svar 4.4:4

v_1=50^\circ, \ \ v_2=120^\circ, \ \ v_3=230^\circ\ \ och \ \ v_4=300^\circ

Svar 4.4:5

a)

\left\{\eqalign{ x&=n\pi\cr x&=\displaystyle \frac{\pi}{4}+\displaystyle \frac{n\pi}{2} }\right.

b) x=\displaystyle \frac{n\pi}{3}
c)

\left\{\eqalign{ x&=\displaystyle \frac{\pi}{20}+\displaystyle \frac{n\pi}{2}\cr x&=-\displaystyle \frac{\pi}{30}+\displaystyle \frac{n\pi}{3} }\right.

Svar 4.4:6

a)

x=n\pi

b)

\left\{\eqalign{ x&=\displaystyle \frac{\pi}{4}+2n\pi\cr x&=\displaystyle \frac{\pi}{2}+n\pi\cr x&=\displaystyle \frac{3\pi}{4}+2n\pi}\right.

c)

\left\{\eqalign{ x&=\displaystyle \frac{2n\pi}{3}\cr x&=\displaystyle \pi + 2n\pi\cr }\right.

Svar 4.4:7

a)

\left\{ \matrix{ x=\displaystyle \frac{\pi}{6}+2n\pi\cr x=\displaystyle \frac{5\pi}{6}+2n\pi\cr x=\displaystyle \frac{3\pi}{2}+2n\pi }\right.

b) x=\pm \displaystyle \frac{\pi}{3} + 2n\pi
c)

\left\{ \matrix{ x=\displaystyle \frac{\pi}{2}+2n\pi\cr x=\displaystyle \frac{\pi}{14}+\displaystyle \frac{2n\pi}{7} }\right.

Svar 4.4:8

a)

\left\{\eqalign{ x&=\displaystyle \frac{\pi}{4}+2n\pi\cr x&=\displaystyle \frac{\pi}{2}+n\pi\cr x&=\displaystyle \frac{3\pi}{4}+2n\pi }\right.

b) x=\displaystyle \frac{\pi}{3}+n\pi
c)

\left\{\eqalign{ x&=n\pi\cr x&=\displaystyle \frac{3\pi}{4}+n\pi }\right.

Den här artikeln är hämtad från http://wiki.math.se/wikis/sf0600_0701/index.php/Facit
Personliga verktyg