Övningar 4.4
Sommarmatte 1
(Skillnad mellan versioner)
Versionen från 16 juli 2007 kl. 11.44 (redigera) KTH.SE:u1zpa8nw (Diskussion | bidrag) ← Gå till föregående ändring |
Nuvarande version (17 juli 2007 kl. 09.46) (redigera) (ogör) KTH.SE:u1zpa8nw (Diskussion | bidrag) |
||
Rad 150: | Rad 150: | ||
</table> | </table> | ||
</div> | </div> | ||
+ | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | ||
+ | <br><br><br><br><br><br><br><br><br><br><br><br> |
Nuvarande version
Övning 4.4:1
För vilka vinklar $\,v\,$, där $\,0 \leq v\leq 2\pi\,$, gäller att
a) | $\sin{v}=\displaystyle \frac{1}{2}$ | b) | $\cos{v}=\displaystyle \frac{1}{2}$ |
c) | $\sin{v}=1$ | d) | $\tan{v}=1$ |
e) | $\cos{v}=2$ | f) | $\sin{v}=-\displaystyle \frac{1}{2}$ |
g) | $\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}$ | ||
Övning 4.4:2
Lös ekvationen
a) | $\sin{x}=\displaystyle \frac{\sqrt{3}}{2}$ | b) | $\cos{x}=\displaystyle \frac{1}{2} $ | c) | $\sin{x}=0$ |
d) | $\sin{5x}=\displaystyle \frac{1}{\sqrt{2}} $ | e) | $\sin{5x}=\displaystyle \frac{1}{2}$ | f) | $\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}$ |
Övning 4.4:3
Lös ekvationen
a) | $\cos{x}=\cos{\displaystyle \frac{\pi}{6}}$ | b) | $\sin{x}=\sin{\displaystyle \frac{\pi}{5}}$ |
c) | $\sin{(x+40^\circ) }=\sin{65^\circ}$ | d) | $\sin{3x}=\sin{15^\circ}$ |
Övning 4.4:4
Bestäm de vinklar $\,v\,$ i intervallet $\,0^\circ \leq v \leq 360^\circ\,$ som uppfyller $\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,$.
Övning 4.4:5
Lös ekvationen
a) | $\sin{3x}=\sin{x}$ | b) | $\tan{x}=\tan{4x}$ |
c) | $\cos{5x}=\cos(x+\pi/5)$ | ||
Övning 4.4:6
Lös ekvationen
a) | $\sin x\cdot \cos 3x = 2\sin x$ | b) | $\sqrt{2}\sin{x}\cos{x}=\cos{x}$ |
c) | $\sin 2x = -\sin x$ | ||
Övning 4.4:7
Lös ekvationen
a) | $2\sin^2{x}+\sin{x}=1$ | b) | $2\sin^2{x}-3\cos{x}=0$ |
c) | $\cos{3x}=\sin{4x}$ | ||
Övning 4.4:8
Lös ekvationen
a) | $\sin{2x}=\sqrt{2}\cos{x}$ | b) | $\sin{x}=\sqrt{3}\cos{x}$ |
c) | $\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}$ | ||