4.4 Övningar

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 30 april 2007 kl. 14.39 (redigera)
Annagf (Diskussion | bidrag)
(Övning 4.4:6)
← Gå till föregående ändring
Versionen från 30 april 2007 kl. 14.40 (redigera) (ogör)
Annagf (Diskussion | bidrag)
(Övning 4.4:7)
Gå till nästa ändring →
Rad 512: Rad 512:
<td class="ntext">$x=\pm \displaystyle \frac{\pi}{3} + 2n\pi $</td> <td class="ntext">$x=\pm \displaystyle \frac{\pi}{3} + 2n\pi $</td>
<td class="ntext">$\textrm{c) }$</td> <td class="ntext">$\textrm{c) }$</td>
-<td class="ntext">$\left\{ +<td class="ntext">
-\matrix{+$\left\{ \matrix{
x=\displaystyle \frac{\pi}{2}+2n\pi\cr x=\displaystyle \frac{\pi}{2}+2n\pi\cr
x=\displaystyle \frac{\pi}{14}+\displaystyle \frac{2}{7}n\pi x=\displaystyle \frac{\pi}{14}+\displaystyle \frac{2}{7}n\pi
-}+}\right.$
-\right.$</td>+</td>
</tr> </tr>
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
Rad 527: Rad 527:
<div class=NavHead>L&ouml;sning a&nbsp;</div> <div class=NavHead>L&ouml;sning a&nbsp;</div>
<div class=NavContent> <div class=NavContent>
-Lösning till delfråga a<br />[[Bild:4_4_6a.gif]]+Lösning till delfråga a<br />[[Bild:4_4_7a.gif]]
</div> </div>
</div> </div>
Rad 534: Rad 534:
<div class=NavHead>L&ouml;sning b&nbsp;</DIV> <div class=NavHead>L&ouml;sning b&nbsp;</DIV>
<div class=NavContent> <div class=NavContent>
-Lösning till delfråga b<br />[[Bild:4_4_6b.gif]]+Lösning till delfråga b<br />[[Bild:4_4_7b.gif]]
</div> </div>
</div> </div>
Rad 541: Rad 541:
<div class=NavHead>L&ouml;sning c&nbsp;</div> <div class=NavHead>L&ouml;sning c&nbsp;</div>
<div class=NavContent> <div class=NavContent>
-Lösning till delfråga c<br />[[Bild:4_4_6c.gif]]+Lösning till delfråga c<br />[[Bild:4_4_7c.gif]]
</div> </div>
</div> </div>

Versionen från 30 april 2007 kl. 14.40

Innehåll

Övning 4.4:1

För vilka vinklar $v$, där $0 \leq v\leq 2\pi$, gäller att

$\textrm{a) }$ $\sin{v}=\displaystyle \frac{1}{2}$ $\textrm{b) }$ $\cos{v}=\displaystyle \frac{1}{2}$ $\textrm{c) }$ $\sin{v}=1$
$\textrm{d) }$ $\tan{v}=1$ $\textrm{e) }$ $\cos{v}=2$ $\textrm{f) }$ $\sin{v}=-\displaystyle \frac{1}{2}$
$\textrm{g) }$ $\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}$

Övning 4.4:2

Lös ekvationen

$\textrm{a) }$ $\sin{x}=\displaystyle \frac{\sqrt{3}}{2}$ $\textrm{b) }$ $\cos{x}=\displaystyle \frac{1}{2} $ $\textrm{c) }$ $\sin{x}=0$
$\textrm{d) }$ $\sin{5x}=\displaystyle \frac{1}{\sqrt{2}} $ $\textrm{e) }$ $\sin{5x}=\displaystyle \frac{1}{2}$ $\textrm{f) }$ $\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}$

Övning 4.4:3

Lös ekvationen

$\textrm{a) }$ $\cos{x}=\cos{\left( \displaystyle \frac{\pi}{6} \right)}$ $\textrm{b) }$ $\sin{x}=\sin{\left( \displaystyle \frac{\pi}{5} \right)}$ $\textrm{c) }$ $\sin{(x+40^\circ)}=\sin{65^\circ}$
$\textrm{d) }$ $\sin{3x}=\sin{15^\circ}$

Övning 4.4:4

Bestäm de vinklar $v$ i intervallet $0^\circ \leq v \leq 360^\circ$ som uppfyller $\cos{\left(2v+10^\circ\right)}=\cos{110^\circ}$.

Övning 4.4:5

Lös ekvationen

$\textrm{a) }$ $\sin{3x}=\sin{x}$ $\textrm{b) }$ $\tan{x}=\tan{4x}$ $\textrm{c) }$ $\cos{5x}=\cos(x+\pi/5)$

Övning 4.4:6

Lös ekvationen

$\textrm{a) }$ $\sin x\cdot \cos 3x = 2\sin x$ $\textrm{b) }$ $\sqrt{2}\sin{x}\cos{x}=\cos{x}$ $\textrm{c) }$

Övning 4.4:7

Lös ekvationen

$\textrm{a) }$ $2\sin^2{x}+\sin{x}=1$ $\textrm{b) }$ $2\sin^2{x}-3\cos{x}=0$ $\textrm{c) }$ $\cos{3x}=\sin{4x}$
Personliga verktyg