4.4 Övningar

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 30 april 2007 kl. 17.02 (redigera)
Ossiang (Diskussion | bidrag)
(Övning 4.4:2)
← Gå till föregående ändring
Versionen från 30 april 2007 kl. 17.03 (redigera) (ogör)
Ossiang (Diskussion | bidrag)
(Övning 4.4:1)
Gå till nästa ändring →
Rad 1: Rad 1:
-==Övning 4.4:1==+==Övning 4.4:1==
<div class="ovning"> <div class="ovning">
För vilka vinklar $v$, där $0 \leq v\leq 2\pi$, gäller att För vilka vinklar $v$, där $0 \leq v\leq 2\pi$, gäller att
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{a) }$</td>+<td class="ntext">a)</td>
<td class="ntext">$\sin{v}=\displaystyle \frac{1}{2}$</td> <td class="ntext">$\sin{v}=\displaystyle \frac{1}{2}$</td>
-<td class="ntext">$\textrm{b) }$</td>+<td class="ntext">b)</td>
<td class="ntext">$\cos{v}=\displaystyle \frac{1}{2}$</td> <td class="ntext">$\cos{v}=\displaystyle \frac{1}{2}$</td>
-<td class="ntext">$\textrm{c) }$</td>+<td class="ntext">c)</td>
<td class="ntext">$\sin{v}=1$</td> <td class="ntext">$\sin{v}=1$</td>
</tr> </tr>
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{d) }$</td>+<td class="ntext">d)</td>
<td class="ntext">$\tan{v}=1$</td> <td class="ntext">$\tan{v}=1$</td>
-<td class="ntext">$\textrm{e) }$</td>+<td class="ntext">e)</td>
<td class="ntext">$\cos{v}=2$</td> <td class="ntext">$\cos{v}=2$</td>
-<td class="ntext">$\textrm{f) }$</td>+<td class="ntext">f)</td>
<td class="ntext">$\sin{v}=-\displaystyle \frac{1}{2}$</td> <td class="ntext">$\sin{v}=-\displaystyle \frac{1}{2}$</td>
</tr> </tr>
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{g) }$</td>+<td class="ntext">g)</td>
<td class="ntext">$\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}$</td> <td class="ntext">$\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}$</td>
<td class="ntext"></td> <td class="ntext"></td>
Rad 39: Rad 39:
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{a) }$</td>+<td class="ntext">a)</td>
<td class="ntext">$\displaystyle v=\frac{\pi}{6}, \displaystyle v=\frac{5\pi}{6}$</td> <td class="ntext">$\displaystyle v=\frac{\pi}{6}, \displaystyle v=\frac{5\pi}{6}$</td>
-<td class="ntext">$\textrm{b) }$</td>+<td class="ntext">b)</td>
<td class="ntext">$\displaystyle v=\frac{\pi}{3}, \displaystyle v=\frac{5\pi}{3}$</td> <td class="ntext">$\displaystyle v=\frac{\pi}{3}, \displaystyle v=\frac{5\pi}{3}$</td>
-<td class="ntext">$\textrm{c) }$</td>+<td class="ntext">c)</td>
<td class="ntext">$\displaystyle v=\frac{\pi}{2}$</td> <td class="ntext">$\displaystyle v=\frac{\pi}{2}$</td>
</tr> </tr>
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{d) }$</td>+<td class="ntext">d)</td>
<td class="ntext">$\displaystyle v=\frac{\pi}{4},\displaystyle v=\frac{5\pi}{4}$</td> <td class="ntext">$\displaystyle v=\frac{\pi}{4},\displaystyle v=\frac{5\pi}{4}$</td>
-<td class="ntext">$\textrm{e) }$</td>+<td class="ntext">e)</td>
-<td class="ntext">$\textrm{lösning saknas}$</td>+<td class="ntext">lösning saknas}$</td>
-<td class="ntext">$\textrm{f) }$</td>+<td class="ntext">f)</td>
<td class="ntext">$\displaystyle v=\frac{11\pi}{6}, \displaystyle v=\frac{7\pi}{6}$</td> <td class="ntext">$\displaystyle v=\frac{11\pi}{6}, \displaystyle v=\frac{7\pi}{6}$</td>
</tr> </tr>
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
<tr align="left"> <tr align="left">
-<td class="ntext">$\textrm{g) }$</td>+<td class="ntext">g)</td>
<td class="ntext">$\displaystyle v=\frac{5\pi}{6}, \displaystyle v=\frac{11\pi}{6}$</td> <td class="ntext">$\displaystyle v=\frac{5\pi}{6}, \displaystyle v=\frac{11\pi}{6}$</td>
<td class="ntext"></td> <td class="ntext"></td>

Versionen från 30 april 2007 kl. 17.03

Innehåll

Övning 4.4:1

För vilka vinklar $v$, där $0 \leq v\leq 2\pi$, gäller att

a) $\sin{v}=\displaystyle \frac{1}{2}$ b) $\cos{v}=\displaystyle \frac{1}{2}$ c) $\sin{v}=1$
d) $\tan{v}=1$ e) $\cos{v}=2$ f) $\sin{v}=-\displaystyle \frac{1}{2}$
g) $\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}$

Övning 4.4:2

Lös ekvationen

a) $\sin{x}=\displaystyle \frac{\sqrt{3}}{2}$ b) $\cos{x}=\displaystyle \frac{1}{2} $ c) $\sin{x}=0$
d) $\sin{5x}=\displaystyle \frac{1}{\sqrt{2}} $ e) $\sin{5x}=\displaystyle \frac{1}{2}$ f) $\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}$

Övning 4.4:3

Lös ekvationen

a) $\cos{x}=\cos{\left( \displaystyle \frac{\pi}{6} \right)}$ b) $\sin{x}=\sin{\left( \displaystyle \frac{\pi}{5} \right)}$
c) $\sin{(x+40^\circ)}=\sin{65^\circ}$ d) $\sin{3x}=\sin{15^\circ}$

Övning 4.4:4

Bestäm de vinklar $v$ i intervallet $0^\circ \leq v \leq 360^\circ$ som uppfyller $\cos{\left(2v+10^\circ\right)}=\cos{110^\circ}$.

Övning 4.4:5

Lös ekvationen

a) $\sin{3x}=\sin{x}$ b) $\tan{x}=\tan{4x}$ c) $\cos{5x}=\cos(x+\pi/5)$

Övning 4.4:6

Lös ekvationen

a) $\sin x\cdot \cos 3x = 2\sin x$ b) $\sqrt{2}\sin{x}\cos{x}=\cos{x}$ c) $\sin 2x = -\sin x$

Övning 4.4:7

Lös ekvationen

a) $2\sin^2{x}+\sin{x}=1$ b) $2\sin^2{x}-3\cos{x}=0$ c) $\cos{3x}=\sin{4x}$

Övning 4.4:8

Lös ekvationen

a) $\sin{2x}=\sqrt{2}\cos{x}$ b) $\sin{x}=\sqrt{3}\cos{x}$ c) $\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}$
Personliga verktyg