Övningar 1.1
Sommarmatte 1
(Skillnad mellan versioner)
KTH.SE:u1zpa8nw (Diskussion | bidrag)
(Ny sida: __NOTOC__ ==Övning 1.1:1== <div class="ovning"> Beräkna (utan hjälp av räknedosa) <table width="100%" cellspacing="10px"> <tr align="left"> <td class="ntext">a)</td> <td class="ntext" w...)
Gå till nästa ändring →
Versionen från 16 juli 2007 kl. 08.01
[redigera] Övning 1.1:1
Beräkna (utan hjälp av räknedosa)
a) | $3-7-4+6-5$ | b) | $3-(7-4)+(6-5)$ |
c) | $3-(7-(4+6)-5)$ | d) | $3-(7-(4+6))-5$ |
[redigera] Övning 1.1:2
Beräkna (utan hjälp av räknedosa)
a) | $(3-(7-4))(6-5)$ | b) | $3-(((7-4)+6)-5)$ |
c) | $3\cdot(-7)-4\cdot(6-5)$ | d) | $3\cdot(-7)-(4+6)/(-5)$ |
[redigera] Övning 1.1:3
Vilka av följande tal tillhör de naturliga talen? heltalen? rationella talen? irrationella talen? Förenkla först!
a) | $8$ | b) | $-4$ | c) | $8-4$ |
d) | $4-8$ | e) | $8(-4)$ | f) | $(-8)(-4)$ |
g) | $\displaystyle \frac{4}{-8}$ | h) | $\displaystyle \frac{-8}{-4}$ | i) | $\displaystyle \frac{\sqrt{2}}{3}$ |
j) | $\displaystyle \Bigl(\frac{4}{\sqrt{2}}\Bigr)^2$ | k) | $-\pi$ | l) | $\pi+1$ |
[redigera] Övning 1.1:4
Ordna följande tal i storleksordning
a) | $\displaystyle 2,\ \frac{3}{5},\ \frac{5}{3}\ $ och $\ \displaystyle \frac{7}{3}$ |
b) | $\displaystyle -\frac{1}{2},\ -\frac{1}{5},\ -\frac{3}{10}\ $ och $\ \displaystyle -\frac{1}{3}$ |
c) | $\displaystyle \frac{1}{2},\ \frac{2}{3},\ \frac{3}{5},\ \frac{5}{8}\ $ och $\ \displaystyle \frac{21}{34}$ |
[redigera] Övning 1.1:5
Ange decimalutvecklingen med tre korrekta decimaler till
a) | $\displaystyle \frac{7}{6}$ | b) | $\displaystyle \frac{9}{4}$ | c) | $\displaystyle \frac{2}{7}$ | d) | $\sqrt{2}$ |
[redigera] Övning 1.1:6
Vilka av följande tal är rationella? Ange dem som en kvot mellan heltal.
a) | $3,14$ |
b) | $3{,}1416\,1416\,1416\,\dots$ |
c) | $0{,}2\,001\,001\,001\,\dots\,$ (därefter är var tredje decimal en 1:a och övriga 0) |
d) | $0{,}10\,100\,1000\,10000\,1\dots\, $ (en 1:a, en 0:a, en 1:a, två 0:or, en 1:a, tre 0:or osv.) |