Facit

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 16 juli 2007 kl. 08.25 (redigera)
KTH.SE:u1zpa8nw (Diskussion | bidrag)

← Gå till föregående ändring
Versionen från 16 juli 2007 kl. 08.29 (redigera) (ogör)
KTH.SE:u1zpa8nw (Diskussion | bidrag)

Gå till nästa ändring →
Rad 343: Rad 343:
</tr> </tr>
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
 +</table>
 +</div>
 +==Övning 2.1:1==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">$3x^2-3x$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">$xy+x^2y-x^3y$</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">$-4x^2+x^2y^2$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d)</td>
 +<td class="ntext" width="33%">$x^3y-x^2y+x^3y^2$</td>
 +<td class="ntext">e)</td>
 +<td class="ntext" width="33%">$x^2-14x+49$</td>
 +<td class="ntext">f)</td>
 +<td class="ntext" width="33%">$16y^2+40y+25$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">g)</td>
 +<td class="ntext" width="33%">$9x^6-6x^3y^2+y^4$</td>
 +<td class="ntext">h)</td>
 +<td class="ntext" width="33%">$9x^{10}+30x^8+25x^6$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:2==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">$-5x^2+20$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">$10x-11$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">$54x$</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">$81x^8-16$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">e)</td>
 +<td class="ntext" width="50%">$2a^2+2b^2$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:3==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">$(x+6)(x-6)$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">$5(x+2)(x-2)$</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">$(x+3)^2$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d)</td>
 +<td class="ntext" width="33%">$(x-5)^2$</td>
 +<td class="ntext">e)</td>
 +<td class="ntext" width="33%">$-2x(x+3)(x-3)$</td>
 +<td class="ntext">f)</td>
 +<td class="ntext" width="33%">$(4x+1)^2$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:4==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">$5\,$ framf&ouml;r $\,x^2\,$, $\,3\,$ framf&ouml;r $\,x$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">$2\,$ framf&ouml;r $\,x^2\,$, $\,1\,$ framf&ouml;r $\,x$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">$\textrm{c) }$</td>
 +<td class="ntext" width="100%">$6\,$ framf&ouml;r $\,x^2\,$, $\,2\,$ framf&ouml;r $\,x$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:5==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">$\displaystyle \frac{1}{1-x}$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">$-\displaystyle \frac{1}{y(y+2)}$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">$3(x-2)(x-1)$</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">$\displaystyle \frac{2(y+2)}{y^2+4}$</td>
 +</tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:6==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">$2y$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">$\displaystyle\frac{-x+12}{(x-2)(x+3)}$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">$\displaystyle\frac{b}{a(a-b)}$</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">$\displaystyle\frac{a(a+b)}{4b}$</td>
 +</tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:7==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">$\displaystyle \frac{4}{(x+3)(x+5)}$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">$\displaystyle \frac{x^4-x^3+x^2+x-1}{x^2(x-1)}$</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">$\displaystyle \frac{ax(a+1-x)}{(a+1)^2}$</td>
 +</tr>
 +</table>
 +</div>
 +
 +==Övning 2.1:8==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">$\displaystyle \frac{x}{(x+3)(x+1)}$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">$\displaystyle \frac{2(x-3)}{x}$</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">$\displaystyle \frac{x+2}{2x+3}$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.2:1==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">$x=1$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">$x=6$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c) </td>
 +<td class="ntext" width="50%">$x=-\displaystyle\frac{3}{2}$</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">$x=-\displaystyle\frac{13}{3}$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.2:2==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">$x=1$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">$x=\displaystyle\frac{5}{3}$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">$x=2$</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">$x=-2$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==Övning 2.2:3==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">$x=9$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">$x=\displaystyle\frac{7}{5}$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c) </td>
 +<td class="ntext" width="100%">$x=\displaystyle\frac{4}{5}$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d) </td>
 +<td class="ntext" width="100%">$x=\displaystyle\frac{1}{2}$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:4==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td>a)</td>
 +<td width="100%">$-2x+y=3$</td>
 +</tr>
 +<tr align="left">
 +<td>b)</td>
 +<td width="100%">$y=-\displaystyle\frac{3}{4}x+\frac{5}{4}$</td>
 +</tr>
 +<tr><td height="5px"\></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:5==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">$y=-3x+9$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">$y=-3x+1$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="100%">$y=3x+5$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d)</td>
 +<td class="ntext" width="100%">$y=-\displaystyle \frac{1}{2}x+5$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">e)</td>
 +<td class="ntext" width="100%">$k = \displaystyle\frac{8}{5}$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:6==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">$\bigl(-\frac{5}{3},0\bigr)$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">$(0,5)$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">$\bigl(0,-\frac{6}{5}\bigr)$</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">$(12,-13)$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">e)</td>
 +<td class="ntext" width="50%">$\bigl(-\frac{1}{4},\frac{3}{2}\bigr)$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:7==
 +<div class="svar">
 +<table width="100%">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_7a.gif‎]] </td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_7b.gif‎]] </td>
 +</tr><tr>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_7c.gif‎]] </td>
 +</tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:8==
 +<div class="svar">
 +<table width="100%">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_8a.gif‎]]</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_8b.gif‎]]</td>
 +</tr><tr>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">[[Bild:Svar_o2_2_8c.gif‎]]</td>
 +</tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.2:9==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">$4\,$ a.e.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">$5\,$ a.e.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="100%">$6\,$ a.e.</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +
 +==&Ouml;vning 2.3:1==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="25%">$(x-1)^2-1$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="25%">$(x+1)^2-2$</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="25%">$-(x-1)^2+6$</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="25%">$\bigl(x+\frac{5}{2}\bigr)^2-\frac{13}{4}$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:2==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr><td height="5px"/></tr>
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">$\left\{ \eqalign{ x_1 &= 1 \cr x_2 &= 3\cr }\right.$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">$\left\{ \eqalign{ y_1 &= -5 \cr y_2 &= 3\cr }\right.$</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%"> saknar (reella) l&ouml;sning</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">d)</td>
 +<td class="ntext" width="33%">$ \left\{ \eqalign{ x_1 &= \textstyle\frac{1}{2}\cr x_2 &= \textstyle\frac{13}{2}\cr }\right.$</td>
 +<td class="ntext">e)</td>
 +<td class="ntext" width="33%">$\left\{ \eqalign{ x_1 &= -1 \cr x_2 &= \textstyle\frac{3}{5}\cr }\right.$</td>
 +<td class="ntext">f)</td>
 +<td class="ntext" width="33%">$ \left\{ \eqalign{ x_1 &= \textstyle\frac{4}{3}\cr x_2 &= 2\cr }\right.$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:3==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="50%">$\left\{ \eqalign{ x_1 &= 0 \cr x_2 & = -3\cr }\right.$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="50%">$\left\{ \eqalign{ x_1 &= 3 \cr x_2 & = -5\cr }\right. $</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = \textstyle\frac{2}{3} \cr x_2 & = -8\cr }\right. $</td>
 +<td class="ntext">d)</td>
 +<td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = 0\cr x_2 & = 12\cr }\right. $</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">e)</td>
 +<td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = -3 \cr x_2 & = 8\cr }\right. $</td>
 +<td class="ntext">f)</td>
 +<td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = 0 \cr x_2 & = 1 \cr x_3 & = 2 }\right. $</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:4==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">$ax^2-ax-2a=0\,$, där $\,a\ne 0\,$ är en konstant.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">$ax^2-2ax-2a=0\,$, där $\,a\ne 0\,$ är en konstant.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="100%">$ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,$, där $\,a\ne 0\,$ är en konstant.</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:5==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="100%">Exempelvis $\ x^2+14x+49=0\,$.</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">b)</td>
 +<td class="ntext" width="100%">$3< x<4$</td>
 +</tr>
 +<tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="100%">$b=-5$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:6==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">$0$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">$-2$</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">$\displaystyle \frac{3}{4}$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:7==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">$1$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">$\displaystyle -\frac{7}{4}$</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">saknar max</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:8==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td>Se lösningen i
 +webmaterialet när du loggat in till kursen.</td>
 +</tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:9==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td class="ntext">a)</td>
 +<td class="ntext" width="33%">$(-1,0)\ $ och $\ (1,0)$</td>
 +<td class="ntext">b)</td>
 +<td class="ntext" width="33%">$(2,0)\ $ och $\ (3,0)$</td>
 +<td class="ntext">c)</td>
 +<td class="ntext" width="33%">$(1,0)\ $ och $\ (3,0)$</td>
 +</tr>
 +<tr><td height="5px"/></tr>
 +</table>
 +</div>
 +
 +==&Ouml;vning 2.3:10==
 +<div class="svar">
 +<table width="100%" cellspacing="10px">
 +<tr align="left">
 +<td>Se lösningen i webmaterialet när du loggat in till kursen</td>
 +</tr>
</table> </table>
</div> </div>

Versionen från 16 juli 2007 kl. 08.29

Övning 1.1:1

a) $-7$ b) $1$
c) $11$ d) $1$

Övning 1.1:2

a) $0$ b) $-1$
c) $-25$ d) $-19$

Övning 1.1:3

a) naturliga talen, heltalen, rationella talen b) heltalen, rationella talen c) naturliga talen, heltalen, rationella talen
d) heltalen, rationella talen e) heltalen, rationella talen f) naturliga talen, heltalen, rationella talen
g) rationella talen h) naturliga talen, heltalen, rationella talen i) irrationella talen
j) naturliga talen, heltalen, rationella talen k) irrationella talen l) irrationella talen

Övning 1.1:4

a) $\displaystyle \frac{3}{5}<\frac{5}{3}<2<\frac{7}{3}$
b) $\displaystyle -\frac{1}{2}<-\frac{1}{3}<-\frac{3}{10}<-\frac{1}{5}$
c) $\displaystyle \frac{1}{2}<\frac{3}{5}<\frac{21}{34}<\frac{5}{8}<\frac{2}{3}$

Övning 1.1:5

a) $1{,}167$ b) $2{,}250$ c) $0{,}286$ d) $1{,}414$

Övning 1.1:6

a) Talet är rationellt och lika med $\,314/100 = 157/50\,$.
b) Talet är rationellt och är lika med $\,31413/9999 = 10471/3333\,$.
c) Talet är rationellt och lika med $\,1999/9990\,$.
d) Talet är irrationellt.

Övning 1.2:1

a) $\displaystyle \frac{93}{28}$ b) $\displaystyle \frac{3}{35}$ c) $\displaystyle -\frac{7}{30}$
d) $\displaystyle \frac{47}{60}$ e) $\displaystyle \frac{47}{84}$

Övning 1.2:2

a) $\displaystyle {30}$ b) $\displaystyle {8}$
c) $\displaystyle {84}$ d) $\displaystyle {225}$

Övning 1.2:3

a) $\displaystyle \frac{19}{100}$ b) $\displaystyle \frac{1}{240}$

Övning 1.2:4

a) $\displaystyle \frac{6}{7}$ b) $\displaystyle \frac{16}{21}$ c) $\displaystyle \frac{1}{6}$

Övning 1.2:5

a) $\displaystyle \frac{105}{4}$ b) $-5$ c) $\displaystyle \frac{8}{55}$

Övning 1.2:6

$\displaystyle \frac{152}{35}$

Övning 1.3:1

a) $72$ b) $3$ c) $-125$ d) $\displaystyle \frac{27}{8}$

Övning 1.3:2

a) $2^6$ b) $2^{-2}$ c) $2^0$

Övning 1.3:3

a) $3^{-1}$ b) $3^5$ c) $3^4$ d) $3^{-3}$ e) $3^{-3}$

Övning 1.3:4

a) $4$ b) $3$ c) $625$
d) $16$ e) $\displaystyle \frac{1}{3750}$

Övning 1.3:5

a) $2$ b) $\displaystyle \frac{1}{2}$ c) $27$
d) $2209$ e) $9$ f) $\displaystyle \frac{25}{3}$


Övning 1.3:6

a) $256^{1/3}>200^{1/3}$ b) $0{,}4^{-3}>0{,}5^{-3}$ c) $0{,}2^{5}>0{,}2^{7}$
d) $\bigl(5^{1/3}\bigr)^{4}>400^{1/3}$ e) $125^{1/2}>625^{1/3}$ f) $3^{40}>2^{56}$

Övning 2.1:1

a) $3x^2-3x$ b) $xy+x^2y-x^3y$ c) $-4x^2+x^2y^2$
d) $x^3y-x^2y+x^3y^2$ e) $x^2-14x+49$ f) $16y^2+40y+25$
g) $9x^6-6x^3y^2+y^4$ h) $9x^{10}+30x^8+25x^6$

Övning 2.1:2

a) $-5x^2+20$ b) $10x-11$
c) $54x$ d) $81x^8-16$
e) $2a^2+2b^2$

Övning 2.1:3

a) $(x+6)(x-6)$ b) $5(x+2)(x-2)$ c) $(x+3)^2$
d) $(x-5)^2$ e) $-2x(x+3)(x-3)$ f) $(4x+1)^2$

Övning 2.1:4

a) $5\,$ framför $\,x^2\,$, $\,3\,$ framför $\,x$
b) $2\,$ framför $\,x^2\,$, $\,1\,$ framför $\,x$
$\textrm{c) }$ $6\,$ framför $\,x^2\,$, $\,2\,$ framför $\,x$

Övning 2.1:5

a) $\displaystyle \frac{1}{1-x}$ b) $-\displaystyle \frac{1}{y(y+2)}$
c) $3(x-2)(x-1)$ d) $\displaystyle \frac{2(y+2)}{y^2+4}$

Övning 2.1:6

a) $2y$ b) $\displaystyle\frac{-x+12}{(x-2)(x+3)}$
c) $\displaystyle\frac{b}{a(a-b)}$ d) $\displaystyle\frac{a(a+b)}{4b}$

Övning 2.1:7

a) $\displaystyle \frac{4}{(x+3)(x+5)}$ b) $\displaystyle \frac{x^4-x^3+x^2+x-1}{x^2(x-1)}$ c) $\displaystyle \frac{ax(a+1-x)}{(a+1)^2}$

Övning 2.1:8

a) $\displaystyle \frac{x}{(x+3)(x+1)}$ b) $\displaystyle \frac{2(x-3)}{x}$ c) $\displaystyle \frac{x+2}{2x+3}$

Övning 2.2:1

a) $x=1$ b) $x=6$
c) $x=-\displaystyle\frac{3}{2}$ d) $x=-\displaystyle\frac{13}{3}$

Övning 2.2:2

a) $x=1$ b) $x=\displaystyle\frac{5}{3}$
c) $x=2$ d) $x=-2$

Övning 2.2:3

a) $x=9$
b) $x=\displaystyle\frac{7}{5}$
c) $x=\displaystyle\frac{4}{5}$
d) $x=\displaystyle\frac{1}{2}$

Övning 2.2:4

a) $-2x+y=3$
b) $y=-\displaystyle\frac{3}{4}x+\frac{5}{4}$

Övning 2.2:5

a) $y=-3x+9$
b) $y=-3x+1$
c) $y=3x+5$
d) $y=-\displaystyle \frac{1}{2}x+5$
e) $k = \displaystyle\frac{8}{5}$

Övning 2.2:6

a) $\bigl(-\frac{5}{3},0\bigr)$ b) $(0,5)$
c) $\bigl(0,-\frac{6}{5}\bigr)$ d) $(12,-13)$
e) $\bigl(-\frac{1}{4},\frac{3}{2}\bigr)$

Övning 2.2:7

a) Bild:Svar_o2_2_7a.gif‎ b) Bild:Svar_o2_2_7b.gif‎
c) Bild:Svar_o2_2_7c.gif‎

Övning 2.2:8

a) Bild:Svar_o2_2_8a.gif‎ b) Bild:Svar_o2_2_8b.gif‎
c) Bild:Svar_o2_2_8c.gif‎

Övning 2.2:9

a) $4\,$ a.e.
b) $5\,$ a.e.
c) $6\,$ a.e.


Övning 2.3:1

a) $(x-1)^2-1$ b) $(x+1)^2-2$ c) $-(x-1)^2+6$ d) $\bigl(x+\frac{5}{2}\bigr)^2-\frac{13}{4}$

Övning 2.3:2

a) $\left\{ \eqalign{ x_1 &= 1 \cr x_2 &= 3\cr }\right.$ b) $\left\{ \eqalign{ y_1 &= -5 \cr y_2 &= 3\cr }\right.$ c) saknar (reella) lösning
d) $ \left\{ \eqalign{ x_1 &= \textstyle\frac{1}{2}\cr x_2 &= \textstyle\frac{13}{2}\cr }\right.$ e) $\left\{ \eqalign{ x_1 &= -1 \cr x_2 &= \textstyle\frac{3}{5}\cr }\right.$ f) $ \left\{ \eqalign{ x_1 &= \textstyle\frac{4}{3}\cr x_2 &= 2\cr }\right.$

Övning 2.3:3

a) $\left\{ \eqalign{ x_1 &= 0 \cr x_2 & = -3\cr }\right.$ b) $\left\{ \eqalign{ x_1 &= 3 \cr x_2 & = -5\cr }\right. $
c) $\left\{ \eqalign{ x_1 & = \textstyle\frac{2}{3} \cr x_2 & = -8\cr }\right. $ d) $\left\{ \eqalign{ x_1 & = 0\cr x_2 & = 12\cr }\right. $
e) $\left\{ \eqalign{ x_1 & = -3 \cr x_2 & = 8\cr }\right. $ f) $\left\{ \eqalign{ x_1 & = 0 \cr x_2 & = 1 \cr x_3 & = 2 }\right. $

Övning 2.3:4

a) $ax^2-ax-2a=0\,$, där $\,a\ne 0\,$ är en konstant.
b) $ax^2-2ax-2a=0\,$, där $\,a\ne 0\,$ är en konstant.
c) $ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,$, där $\,a\ne 0\,$ är en konstant.

Övning 2.3:5

a) Exempelvis $\ x^2+14x+49=0\,$.
b) $3< x<4$
c) $b=-5$

Övning 2.3:6

a) $0$ b) $-2$ c) $\displaystyle \frac{3}{4}$

Övning 2.3:7

a) $1$ b) $\displaystyle -\frac{7}{4}$ c) saknar max

Övning 2.3:8

Se lösningen i webmaterialet när du loggat in till kursen.

Övning 2.3:9

a) $(-1,0)\ $ och $\ (1,0)$ b) $(2,0)\ $ och $\ (3,0)$ c) $(1,0)\ $ och $\ (3,0)$

Övning 2.3:10

Se lösningen i webmaterialet när du loggat in till kursen
Den här artikeln är hämtad från http://wiki.math.se/wikis/sf0600_0701/index.php/Facit
Personliga verktyg