Sommarmatte 1
Övning 4.1:1
Skriv i grader och radianer
a) |
$\displaystyle \frac{1}{4} \textrm{ varv} $ |
b) |
$\displaystyle \frac{3}{8} \textrm{ varv}$ |
c) |
$-\displaystyle \frac{2}{3}\textrm{ varv}$ |
d) |
$\displaystyle \frac{97}{12} \textrm{ varv} $ |
|
a) |
$90^\circ\ $ och $\ \displaystyle \frac{\pi}{2} \textrm{ rad} $ |
b) |
$135^\circ\ $ och $\ \displaystyle \frac{3\pi}{4} \textrm{ rad}$ |
c) |
$-240^\circ\ $ och $\ \displaystyle -\frac{4\pi}{3} \textrm{ rad}$ |
d) |
$2910^\circ\ $ och $\ \displaystyle \frac{97\pi}{6} \textrm{ rad}$ |
|
Övning 4.1:2
Omvandla till radianer
a) |
$45^\circ$ |
b) |
$135^\circ$ |
c) |
$-63^\circ$ |
d) |
$270^\circ$ |
|
a) |
$\displaystyle \frac{\pi}{4}\textrm{ rad}$ |
b) |
$\displaystyle \frac{3\pi}{4}\textrm{ rad}$ |
c) |
$-\displaystyle \frac{7\pi}{20}\textrm{ rad}$ |
d) |
$\displaystyle \frac{3\pi}{2}\textrm{ rad}$ |
|
Övning 4.1:3
Bestäm längden av sidan som är markerad med $\,x$
a) |
$x=50$ |
b) |
$x=5$ |
c) |
$x=15$ |
|
Övning 4.1:4
a) |
Bestäm avståndet mellan punkterna (1,1) och (5,4). |
b) |
Bestäm avståndet mellan punkterna (-2,5) och (3,-1). |
c) |
Hitta den punkt på x-axeln som ligger lika långt från punkterna (3,3) och (5,1). |
|
a) |
$5 \textrm{ l.e.}$ |
b) |
$\sqrt{61} \textrm{ l.e.}$ |
c) |
$(2,0)$ |
|
Övning 4.1:5
a) |
Bestäm ekvationen för en cirkel med medelpunkt i (1,2) och radie 2. |
b) |
Bestäm ekvationen för den cirkel som har medelpunkt i (2,-1) och innehåller punkten (-1,1). |
|
a) |
$(x-1)^2+(y-2)^2=4$ |
b) |
$(x-2)^2+(y+1)^2=13$ |
|
Övning 4.1:6
Skissera följande cirklar
a) |
$x^2+y^2=9$ |
b) |
$(x-1)^2+(y-2)^2=3$ |
c) |
$(3x-1)^2+(3y+7)^2=10$ |
|
Facit
Facit till alla delfrågor
Övning 4.1:7
Skissera följande cirklar
a) |
$x^2+2x+y^2-2y=1$ |
b) |
$x^2+y^2+4y=0$ |
c) |
$x^2-2x+y^2+6y=-3$ |
d) |
$x^2-2x+y^2+2y=-2$ |
|
Facit
Facit till alla delfrågor
a) |
BILD |
b) |
BILD |
c) |
BILD |
d) |
BILD |
|
Övning 4.1:8
Hur många varv snurrar ett hjul med radie 50 cm när det rullar 10m?
|
$\displaystyle \frac{10}{\pi}\textrm{ varv }\approx 3,2 \textrm{ varv} $ |
|
Övning 4.1:9
På en klocka är sekundvisaren 8 cm lång. Hur stor area sveper den över på 10 sekunder?
|
$\displaystyle \frac{32\pi}{3} \textrm{ cm}^2 \approx 33,5 \textrm{ cm}^2$ |
|
Övning 4.1:10
En 5,4 m lång tvättlina hänger mellan två vertikala träd på 4,8 m avstånd från varandra. Linans ena ände är fäst 0,6 m högre än den andra änden, och 1,2 m från trädet där linan har sin lägre infästning hänger en kavaj på en galge. Bestäm hur mycket under den nedre infästningspunkten som galgen hänger (dvs. avståndet $\,x\,$ i figuren).