4.4 Övningar

Sommarmatte 1

Version från den 30 april 2007 kl. 14.31; Annagf (Diskussion | bidrag)
Hoppa till: navigering, sök

Innehåll

Övning 4.4:1

För vilka vinklar $v$, där $0 \leq v\leq 2\pi$, gäller att

$\textrm{a) }$ $\sin{v}=\displaystyle \frac{1}{2}$ $\textrm{b) }$ $\cos{v}=\displaystyle \frac{1}{2}$ $\textrm{c) }$ $\sin{v}=1$
$\textrm{d) }$ $\tan{v}=1$ $\textrm{e) }$ $\cos{v}=2$ $\textrm{f) }$ $\sin{v}=-\displaystyle \frac{1}{2}$
$\textrm{g) }$ $\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}$

Övning 4.4:2

Lös ekvationen

$\textrm{a) }$ $\sin{x}=\displaystyle \frac{\sqrt{3}}{2}$ $\textrm{b) }$ $\cos{x}=\displaystyle \frac{1}{2} $ $\textrm{c) }$ $\sin{x}=0$
$\textrm{d) }$ $\sin{5x}=\displaystyle \frac{1}{\sqrt{2}} $ $\textrm{e) }$ $\sin{5x}=\displaystyle \frac{1}{2}$ $\textrm{f) }$ $\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}$

Övning 4.4:3

Lös ekvationen

$\textrm{a) }$ $\cos{x}=\cos{\left( \displaystyle \frac{\pi}{6} \right)}$ $\textrm{b) }$ $\sin{x}=\sin{\left( \displaystyle \frac{\pi}{5} \right)}$ $\textrm{c) }$ $\sin{(x+40^\circ)}=\sin{65^\circ}$
$\textrm{d) }$ $\sin{3x}=\sin{15^\circ}$

Övning 4.4:4

Bestäm de vinklar $v$ i intervallet $0^\circ \leq v \leq 360^\circ$ som uppfyller $\cos{\left(2v+10^\circ\right)}=\cos{110^\circ}$.

Övning 4.4:5

Lös ekvationen

$\textrm{a) }$ $\sin{3x}=\sin{x}$ $\textrm{b) }$ $\tan{x}=\tan{4x}$ $\textrm{c) }$ $\cos{5x}=\cos(x+\pi/5)$
Personliga verktyg