Sommarmatte 2
Tolka integralerna som areor och bestäm deras värde
| a) |
$\displaystyle\int_{-1}^{2} 5\, dx$ |
b) |
$\displaystyle\int_{0}^{1} (2x+1)\, dx$ |
| c) |
$\displaystyle \int_{0}^{2} (3-2x)\, dx$ |
d) |
$\displaystyle\int_{-1}^{2}|x| \, dx$ |
Ledning d) För $a < b < 0$ gäller $\displaystyle\int_{a}^{b}|x|\, dx=\int_{a}^{b} -x\,dx$
| a) |
$15$ |
b) |
$2$ |
|
| c) |
$2$ |
d) |
$\displaystyle\frac{5}{2}$ |
|
Beräkna integralerna
| a) |
$\displaystyle\int_{0}^{2} (x^2+3x^3)\, dx$ |
b) |
$\displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx$ |
| c) |
$ \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx$ |
d) |
$\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx$ |
Ledning c,d) skriv om $\sqrt x=x^{1/2}$, och använd eventuellt potenslagarna.
| a) |
$\displaystyle\frac{44}{3}$ |
b) |
$\displaystyle-\frac{9}{2}$ |
|
| c) |
$\displaystyle\frac{32}{3}$ |
d) |
$1$ |
|
Beräkna integralerna
| a) |
$\displaystyle\int \sin x\, dx$ |
b) |
$\displaystyle\int 2\sin x \cos x\, dx$ |
| c) |
$ \displaystyle\int e^{2x}(e^x+1)\, dx$ |
d) |
$\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx$ |
Ledning b) Använd att $\sin2v=2\sin v\cos v$
Ledning d) $\displaystyle\int\frac{x^2+1}{x}\, dx=\int\frac{x^2}{x}\, dx+\int\frac{1}{x}\, dx$
| a) |
$-\cos x + C$ |
b) |
$\displaystyle-\frac{\cos 2x}{2}+C$ |
|
| c) |
$\displaystyle\frac{e^{3x}}{3}+\frac{e^{2x}}{2}+C$ |
d) |
$\displaystyle\frac{x^2}{2}+\ln x + C$ |
|
| a) |
Beräkna arean mellan kurvan $y=\sin x$ och $x$-axeln när $0\le x \le \frac{5\pi}{4}$ |
| b) |
Beräkna den del av kurvan $y=-x^2+2x+2$ ovanför $x$-axeln |
| c) |
Beräkna arean av det ändliga området mellan kurvorna $y=\frac{1}{4}x^2+2$ och $y=8-\frac{1}{8}x^2$ (studentexamen 1965). |
| d) |
Beräkna arean av det ändliga området som kurvorna $y=x+2, y=1$ och $y=\frac{1}{x}$ innesluter. |
| e) |
Beräkna arean av området som ges av olikheterna $x+2\le y\le x^2$. |
|
| a) $3-\displaystyle\frac{1}{\sqrt2}$ a.e. |
|
| b) $\displaystyle 4.\sqrt{3}$ a.e. |
|
| c) $32$ a.e. |
|
| d) $\sqrt{2}-1-\ln(\sqrt{2}-1)\,$ a.e. |
|
| e) $\displaystyle\frac{9}{2}$ a.e. |
|
Beräkna integralerna
| a) |
$\displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad$ (Ledning: förläng med nämnarens konjugat) |
| b) |
$\displaystyle \int \sin^2 x\quad$ (Ledning: skriv om integranden med en trigonometrisk formel) |
|
| a) $\displaystyle\frac{2}{27}\left((x+9)\sqrt{x+9}+x\sqrt{x}\right)+C$ |
|
| b) $-\displaystyle\frac{\sin2x}{4}+\frac{x}{2}+C$ |
Beräkna integralerna
| a) |
$\displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}$ genom att använda substitution $u=3x-1$ |
| b) |
$\displaystyle \int (x^2+3)^5x \, dx$ genom att använda substitution $u=x^2+3$ |
| c) |
$\displaystyle \int x^2 e^{x^3} \, dx$ genom att använda substitution $u=x^3$ |
|
| a) |
$\displaystyle\frac{13}{1000}$ |
| b) |
$\displaystyle\frac{(x^2+3)^6}{12}+C$ |
| c) |
$\displaystyle\frac{1}{3}e^{\scriptstyle x^3}+C$ |
|
Beräkna integralerna
| a) |
$\displaystyle\int_{0}^{\pi} \cos 5x\, dx$ |
b) |
$\displaystyle\int_{0}^{1/2} e^{2x+3}\, dx$ |
| c) |
$ \displaystyle\int_{0}^{5} \sqrt{3x + 1} \, dx$ |
d) |
$\displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx$ |
Ledning b) Använd substitutionen $u=2x+3$
Ledning c) Använd substitutionen $u^2=3x+1$
Ledning d) Använd substitutionen $u^3=1-x$
| a) |
$0$ |
b) |
$\displaystyle\frac{1}{2}(e^4-e^3)$ |
| c) |
$14$ |
d) |
$\displaystyle\frac{3}{4}$ |
Beräkna integralerna
| a) |
$\displaystyle\int 2x \sin x^2\, dx$ |
b) |
$\displaystyle\int \sin x \cos x\, dx$ |
| c) |
$ \displaystyle\int \displaystyle\frac{\ln x}{x}\, dx$ |
d) |
$\displaystyle\int \displaystyle\frac{x+1}{x^2+2x+2}\, dx$ |
| e) |
$ \displaystyle\int \displaystyle\frac{x}{x^2+1}\, dx$ |
f) |
$\displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx$ |
Ledning c) $\displaystyle \frac{\ln x}{x}=\ln x\cdot \frac{1}{x}= \ln x \cdot (\ln x)'$
Ledning d, e) $\left(\ln \, f(x)\right)'=\displaystyle \frac{f'(x)}{f(x)}$
Ledning f) Använd substitutionen $u=\sqrt x$
| a) |
$-\cos x^2+C$ |
b) |
$\displaystyle\frac{\sin^2x}{2}+C$ |
| c) |
$\frac{1}{2}(\ln x)^2+C$ |
d) |
$\displaystyle\frac{1}{2}\ln\left(x^2+2x+2\right)+C$ |
| e) |
$\displaystyle\frac{1}{2}\ln\left(x^2+1\right)+C$ |
f) |
$-2\cos\sqrt{x}+C$ |
Använd formeln $$\int \frac{dx}{x^2+1} = \arctan x + C$$ för att beräkna integralerna
| a) |
$\displaystyle\int \frac{dx}{x^2+4}$ |
b) |
$\displaystyle\int \frac{dx}{(x-1)^2+3}$ |
| c) |
$ \displaystyle\int \frac{dx}{x^2+4x+8}$ |
d) |
$\displaystyle\int \frac{x^2}{x^2 +1}\, dx$ |
Ledning: Substituera så att $x^2+a = au^2+a =a(u^2+1)$
| a) |
$\displaystyle\frac{1}{2}\arctan\left(\frac{x}{2}\right)+C$ |
b) |
$\displaystyle\frac{1}{\sqrt3}\arctan\left(\frac{x-1}{\sqrt3}\right)+C$ |
| c) |
$\displaystyle\frac{1}{2}\arctan\left(\frac{x+2}{2}\right)+C$ |
d) |
$x-\arctan x + C$ |
Beräkna integralerna
| a) |
$\displaystyle\int 2x e^{-x} \, dx$ |
b) |
$\displaystyle\int(x+1) \sin x \, dx$ |
| c) |
$ \displaystyle\int x^2 \cos x \, dx$ |
d) |
$\displaystyle\int x \ln x \, dx$ |
| a) |
$-2(x+1)e^{-x}+C$ |
b) |
$-(x+1)\cos x+\sin x + C$ |
| c) |
$2x\cos x + (x^2-2)\sin x + C$ |
d) |
$\displaystyle\frac{x^2}{2}\left(\ln x - \frac{1}{2}\right) + C$ |
Beräkna integralerna
| a) |
$\displaystyle\int e^{\sqrt x}\, dx$ |
b) |
$\displaystyle\int_{0}^{1} x^3 e^{x^2} \, dx$ |
| c) |
$ \displaystyle\int \tan x \, dx$ |
d) |
$\displaystyle\int \ln x\, dx$ |
Ledning c) $\displaystyle\tan x = \frac{\sin x}{\cos x}, \quad \left(\ln\, f(x)\right)'=\frac{f'(x)}{f(x)}$
Ledning d) Använd substitutionen $u=\ln x$
| a) |
$2e^{\sqrt{x}}\left(\sqrt{x}-1\right)+C$ |
b) |
$\displaystyle\frac{1}{2}$ |
| c) |
$-\ln|\cos x|+C$ |
d) |
$x(\ln x-1)+C$ |