Versionen från 25 juni 2007 kl. 09.19 (redigera) KTH.SE:u1xsetv1 (Diskussion | bidrag) ← Gå till föregående ändring |
Nuvarande version (25 juni 2007 kl. 12.21) (redigera) (ogör) KTH.SE:u1xsetv1 (Diskussion | bidrag) |
| (3 mellanliggande versioner visas inte.) |
| Rad 1: |
Rad 1: |
| | + | __NOTOC__ |
| | ==Övning 2.1:1== | | ==Övning 2.1:1== |
| | <div class="ovning">Tolka integralerna som areor och bestäm deras värde | | <div class="ovning">Tolka integralerna som areor och bestäm deras värde |
| Rad 58: |
Rad 59: |
| | | | |
| | | | |
| - | <div class=NavFrame style="CLEAR: both"> | + | <div class="svar"> |
| - | <div class=NavHead>Facit </div> | + | |
| - | <div class=NavContent> | + | |
| - | Facit till alla delfrågor | + | |
| | <table width="100%" cellspacing="10px"> | | <table width="100%" cellspacing="10px"> |
| | <tr align="left"> | | <tr align="left"> |
| Rad 78: |
Rad 76: |
| | <tr><td height="5px"/></tr> | | <tr><td height="5px"/></tr> |
| | </table> | | </table> |
| - | </div> | |
| | </div> | | </div> |
| | | | |
| Rad 199: |
Rad 196: |
| | <tr align="left"> | | <tr align="left"> |
| | <td class="ntext">b) $-\displaystyle\frac{\sin2x}{4}+\frac{x}{2}+C$</td> | | <td class="ntext">b) $-\displaystyle\frac{\sin2x}{4}+\frac{x}{2}+C$</td> |
| | + | </tr> |
| | + | </table> |
| | + | </div> |
| | + | |
| | + | ==Övning 2.2:1== |
| | + | <div class="ovning"> |
| | + | Beräkna integralerna |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="100%">$\displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}$ genom att använda substitution $u=3x-1$</td> |
| | + | </tr> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="100%">$\displaystyle \int (x^2+3)^5x \, dx$ genom att använda substitution $u=x^2+3$</td> |
| | + | </tr> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="100%">$\displaystyle \int x^2 e^{x^3} \, dx$ genom att använda substitution $u=x^3$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | </div> |
| | + | |
| | + | <div class="svar"> |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="100%">$\displaystyle\frac{13}{1000}$</td> |
| | + | </tr> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="100%">$\displaystyle\frac{(x^2+3)^6}{12}+C$</td> |
| | + | </tr> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="100%">$\displaystyle\frac{1}{3}e^{\scriptstyle x^3}+C$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | </div> |
| | + | |
| | + | ==Övning 2.2:2== |
| | + | <div class="ovning">Beräkna integralerna |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int_{0}^{\pi} \cos 5x\, dx$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int_{0}^{1/2} e^{2x+3}\, dx$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$ \displaystyle\int_{0}^{5} \sqrt{3x + 1} \, dx$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx$</td> |
| | + | </tr> |
| | + | </table> |
| | + | Ledning b) Använd substitutionen $u=2x+3$<br\> |
| | + | Ledning c) Använd substitutionen $u^2=3x+1$<br\> |
| | + | Ledning d) Använd substitutionen $u^3=1-x$ |
| | + | </div> |
| | + | |
| | + | |
| | + | <div class="svar"> |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$0$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{1}{2}(e^4-e^3)$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$14$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{3}{4}$</td> |
| | + | </tr> |
| | + | </table> |
| | + | </div> |
| | + | |
| | + | |
| | + | ==Övning 2.2:3== |
| | + | <div class="ovning">Beräkna integralerna |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int 2x \sin x^2\, dx$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int \sin x \cos x\, dx$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$ \displaystyle\int \displaystyle\frac{\ln x}{x}\, dx$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int \displaystyle\frac{x+1}{x^2+2x+2}\, dx$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="50%">$ \displaystyle\int \displaystyle\frac{x}{x^2+1}\, dx$</td> |
| | + | <td class="ntext">f)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx$</td> |
| | + | </tr> |
| | + | </table> |
| | + | Ledning c) $\displaystyle \frac{\ln x}{x}=\ln x\cdot \frac{1}{x}= \ln x \cdot (\ln x)'$<br> |
| | + | Ledning d, e) $\left(\ln \, f(x)\right)'=\displaystyle \frac{f'(x)}{f(x)}$<br> |
| | + | Ledning f) Använd substitutionen $u=\sqrt x$ |
| | + | </div> |
| | + | |
| | + | <div class="svar"> |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$-\cos x^2+C$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{\sin^2x}{2}+C$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$\frac{1}{2}(\ln x)^2+C$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{1}{2}\ln\left(x^2+2x+2\right)+C$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{1}{2}\ln\left(x^2+1\right)+C$</td> |
| | + | <td class="ntext">f)</td> |
| | + | <td class="ntext" width="50%">$-2\cos\sqrt{x}+C$</td> |
| | + | </tr> |
| | + | </table> |
| | + | </div> |
| | + | |
| | + | |
| | + | ==Övning 2.2:4== |
| | + | <div class="ovning">Använd formeln $$\int \frac{dx}{x^2+1} = \arctan x + C$$ för att beräkna integralerna |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int \frac{dx}{x^2+4}$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int \frac{dx}{(x-1)^2+3}$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$ \displaystyle\int \frac{dx}{x^2+4x+8}$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int \frac{x^2}{x^2 +1}\, dx$</td> |
| | + | </tr> |
| | + | </table> |
| | + | Ledning: Substituera så att $x^2+a = au^2+a =a(u^2+1)$ |
| | + | </div> |
| | + | |
| | + | <div class="svar"> |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{1}{2}\arctan\left(\frac{x}{2}\right)+C$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{1}{\sqrt3}\arctan\left(\frac{x-1}{\sqrt3}\right)+C$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{1}{2}\arctan\left(\frac{x+2}{2}\right)+C$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$x-\arctan x + C$</td> |
| | + | </tr> |
| | + | </table> |
| | + | </div> |
| | + | |
| | + | ==Övning 2.3:1== |
| | + | <div class="ovning">Beräkna integralerna |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int 2x e^{-x} \, dx$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int(x+1) \sin x \, dx$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$ \displaystyle\int x^2 \cos x \, dx$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int x \ln x \, dx$</td> |
| | + | </tr> |
| | + | </table> |
| | + | </div> |
| | + | |
| | + | <div class="svar"> |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$-2(x+1)e^{-x}+C$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$-(x+1)\cos x+\sin x + C$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$2x\cos x + (x^2-2)\sin x + C$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{x^2}{2}\left(\ln x - \frac{1}{2}\right) + C$</td> |
| | + | </tr> |
| | + | </table> |
| | + | </div> |
| | + | |
| | + | |
| | + | ==Övning 2.3:2== |
| | + | <div class="ovning">Beräkna integralerna |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int e^{\sqrt x}\, dx$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int_{0}^{1} x^3 e^{x^2} \, dx$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$ \displaystyle\int \tan x \, dx$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\int \ln x\, dx$</td> |
| | + | </tr> |
| | + | </table> |
| | + | Ledning c) $\displaystyle\tan x = \frac{\sin x}{\cos x}, \quad \left(\ln\, f(x)\right)'=\frac{f'(x)}{f(x)}$ <br\> |
| | + | Ledning d) Använd substitutionen $u=\ln x$ |
| | + | </div> |
| | + | |
| | + | <div class="svar"> |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$2e^{\sqrt{x}}\left(\sqrt{x}-1\right)+C$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{1}{2}$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$-\ln|\cos x|+C$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$x(\ln x-1)+C$</td> |
| | </tr> | | </tr> |
| | </table> | | </table> |
| | </div> | | </div> |