1.2 Övningar
Sommarmatte 2
(Skillnad mellan versioner)
| Versionen från 1 juni 2007 kl. 14.08 (redigera) KTH.SE:u1rp004j (Diskussion | bidrag) ← Gå till föregående ändring |
Nuvarande version (18 juni 2007 kl. 07.40) (redigera) (ogör) KTH.SE:u1tyze7e (Diskussion | bidrag) (Korrekturläst) |
||
| (13 mellanliggande versioner visas inte.) | |||
| Rad 29: | Rad 29: | ||
| <tr align="left"> | <tr align="left"> | ||
| <td class="ntext">a)</td> | <td class="ntext">a)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\cos^2x-\sin^2x=\cos2x$</td> |
| <td class="ntext">b)</td> | <td class="ntext">b)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$2x\ln x+ x$</td> |
| <td class="ntext">c)</td> | <td class="ntext">c)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle\frac{x^2+2x-1}{(x+1)^2}=1-\frac{2}{(x+1)^2}$</td> |
| </tr> | </tr> | ||
| <tr align="left"> | <tr align="left"> | ||
| <td class="ntext">d)</td> | <td class="ntext">d)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle\frac{\cos x}{x}-\frac{\sin x}{x^2}$</td> |
| <td class="ntext">e)</td> | <td class="ntext">e)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle\frac{1}{\ln x}-\frac{1}{(\ln x)^2}$</td> |
| <td class="ntext">f)</td> | <td class="ntext">f)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle \frac{\ln x + 1}{\sin x}-\frac{x\ln x \cos x}{\sin^2x}$</td> |
| </tr> | </tr> | ||
| </table> | </table> | ||
| Rad 125: | Rad 125: | ||
| <tr> | <tr> | ||
| <td align="center"> | <td align="center"> | ||
| - | [[Bild:1_2_1f.gif]] | + | [[Bild:1_2_1f-1(2).gif]]<br\>[[Bild:1_2_1f-2(2).gif]] |
| </td> | </td> | ||
| </tr> | </tr> | ||
| Rad 148: | Rad 148: | ||
| <td class="ntext" width="33%">$\ln \ln x$</td> | <td class="ntext" width="33%">$\ln \ln x$</td> | ||
| <td class="ntext">e)</td> | <td class="ntext">e)</td> | ||
| - | <td class="ntext" width="33%">$(2x+1)^2(1-x)^4$</td> | + | <td class="ntext" width="33%">$x(2x+1)^4$</td> |
| <td class="ntext">f)</td> | <td class="ntext">f)</td> | ||
| <td class="ntext" width="33%">$\cos \sqrt{1-x}$</td> | <td class="ntext" width="33%">$\cos \sqrt{1-x}$</td> | ||
| Rad 162: | Rad 162: | ||
| <tr align="left"> | <tr align="left"> | ||
| <td class="ntext">a)</td> | <td class="ntext">a)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\cos x^2 \cdot 2x$</td> |
| <td class="ntext">b)</td> | <td class="ntext">b)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$e^{x^2+x}(2x+1)$</td> |
| <td class="ntext">c)</td> | <td class="ntext">c)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle - \frac{\sin x}{2\sqrt{\cos x}}$</td> |
| </tr> | </tr> | ||
| <tr align="left"> | <tr align="left"> | ||
| <td class="ntext">d)</td> | <td class="ntext">d)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle\frac{1}{x\ln x}$</td> |
| <td class="ntext">e)</td> | <td class="ntext">e)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$(2x+1)^3(10x+1)$</td> |
| <td class="ntext">f)</td> | <td class="ntext">f)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle\frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}$</td> |
| </tr> | </tr> | ||
| </table> | </table> | ||
| Rad 244: | Rad 244: | ||
| <tr> | <tr> | ||
| <td align="center"> | <td align="center"> | ||
| - | [[Bild:1_2_2e.gif]] | + | [[Bild:1_2_2e-1(2).gif]]<br\>[[Bild:1_2_2e-2(2).gif]] |
| </td> | </td> | ||
| </tr> | </tr> | ||
| Rad 258: | Rad 258: | ||
| <tr> | <tr> | ||
| <td align="center"> | <td align="center"> | ||
| - | [[Bild:1_2_2f.gif]] | + | [[Bild:1_2_2f-1(2).gif]]<br\>[[Bild:1_2_2f-2(2).gif]] |
| </td> | </td> | ||
| </tr> | </tr> | ||
| Rad 273: | Rad 273: | ||
| <td class="ntext" width="33%">$ \ln (\sqrt{x} + \sqrt{x+1})$</td> | <td class="ntext" width="33%">$ \ln (\sqrt{x} + \sqrt{x+1})$</td> | ||
| <td class="ntext">b)</td> | <td class="ntext">b)</td> | ||
| - | <td class="ntext" width="33%">\sqrt{\displayatyle \frac{x+1}{x-1}}</td> | + | <td class="ntext" width="33%">$\sqrt{\displaystyle \frac{x+1}{x-1}}$</td> |
| <td class="ntext">c)</td> | <td class="ntext">c)</td> | ||
| <td class="ntext" width="33%">$\displaystyle\frac{1}{x\sqrt{1-x^2}}$</td> | <td class="ntext" width="33%">$\displaystyle\frac{1}{x\sqrt{1-x^2}}$</td> | ||
| Rad 295: | Rad 295: | ||
| <tr align="left"> | <tr align="left"> | ||
| <td class="ntext">a)</td> | <td class="ntext">a)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle\frac{1}{2\sqrt{x}\sqrt{x+1}}$</td> |
| <td class="ntext">b)</td> | <td class="ntext">b)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle - \frac{1}{(x-1)^{3/2}\sqrt{x+1}}$</td> |
| <td class="ntext">c)</td> | <td class="ntext">c)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle - \frac{1-2x^2}{x^2(1-x^2)^{3/2}}$</td> |
| </tr> | </tr> | ||
| <tr align="left"> | <tr align="left"> | ||
| <td class="ntext">d)</td> | <td class="ntext">d)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$-\cos\cos\sin x \cdot \sin\sin x \cdot \cos x$</td> |
| <td class="ntext">e)</td> | <td class="ntext">e)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$e^{\sin x^2}\cdot \cos x^2 \cdot 2x$</td> |
| <td class="ntext">f)</td> | <td class="ntext">f)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle x^{\tan x}\Bigl(\frac{\ln x}{\cos^2x}+\frac{\tan x}{x}\Bigr)$</td> |
| </tr> | </tr> | ||
| </table> | </table> | ||
| Rad 324: | Rad 324: | ||
| <tr> | <tr> | ||
| <td align="center"> | <td align="center"> | ||
| - | [[Bild:1_2_3a.gif]] | + | [[Bild:1_2_3a-1(2).gif]]<br\>[[Bild:1_2_3a-2(2).gif]] |
| </td> | </td> | ||
| </tr> | </tr> | ||
| Rad 338: | Rad 338: | ||
| <tr> | <tr> | ||
| <td align="center"> | <td align="center"> | ||
| - | [[Bild:1_2_3b.gif]] | + | [[Bild:1_2_3b-1(2).gif]]<br\>[[Bild:1_2_3b-2(2).gif]] |
| </td> | </td> | ||
| </tr> | </tr> | ||
| Rad 352: | Rad 352: | ||
| <tr> | <tr> | ||
| <td align="center"> | <td align="center"> | ||
| - | [[Bild:1_2_3c.gif]] | + | [[Bild:1_2_3c-1(2).gif]]<br\>[[Bild:1_2_3c-2(2).gif]] |
| </td> | </td> | ||
| </tr> | </tr> | ||
| Rad 400: | Rad 400: | ||
| </div> | </div> | ||
| </div> | </div> | ||
| - | |||
| ==Övning 1.2:4== | ==Övning 1.2:4== | ||
| <div class="ovning"> | <div class="ovning"> | ||
| - | Beräkna derivatan av följande funktioner och förenkla svaret så långt som möjligt | + | Beräkna andraderivatan av följande funktioner och förenkla svaret så långt som möjligt |
| <table width="100%" cellspacing="10px"> | <table width="100%" cellspacing="10px"> | ||
| <tr align="left"> | <tr align="left"> | ||
| Rad 422: | Rad 421: | ||
| <tr align="left"> | <tr align="left"> | ||
| <td class="ntext">a)</td> | <td class="ntext">a)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle\frac{3x}{(1-x^2)^{5/2}}$</td> |
| <td class="ntext">b)</td> | <td class="ntext">b)</td> | ||
| - | <td class="ntext" width="33%">Svar</td> | + | <td class="ntext" width="33%">$\displaystyle - \frac{2\sin \ln x}{x}$</td> |
| </tr> | </tr> | ||
| </table> | </table> | ||
| Rad 441: | Rad 440: | ||
| <tr> | <tr> | ||
| <td align="center"> | <td align="center"> | ||
| - | [[Bild:1_2_4a.gif]] | + | [[Bild:1_2_4a-1(2).gif]]<br\>[[Bild:1_2_4a-2(2).gif]] |
| </td> | </td> | ||
| </tr> | </tr> | ||
| Rad 455: | Rad 454: | ||
| <tr> | <tr> | ||
| <td align="center"> | <td align="center"> | ||
| - | [[Bild:1_2_4b.gif]] | + | [[Bild:1_2_4b-1(2).gif]]<br\>[[Bild:1_2_4b-2(2).gif]] |
| </td> | </td> | ||
| </tr> | </tr> | ||
Nuvarande version
Innehåll |
[redigera] Övning 1.2:1
Beräkna derivatan av följande funktioner och förenkla svaret så långt som möjligt
| a) | $\cos x \cdot \sin x$ | b) | $x^2\ln x$ | c) | $\displaystyle\frac{x^2+1}{x+1}$ |
| d) | $\displaystyle\frac{\sin x}{x}$ | e) | $\displaystyle\frac{x}{\ln x}$ | f) | $\displaystyle\frac{x \ln x}{\sin x}$ |
Facit
Facit till alla delfrågor
| a) | $\cos^2x-\sin^2x=\cos2x$ | b) | $2x\ln x+ x$ | c) | $\displaystyle\frac{x^2+2x-1}{(x+1)^2}=1-\frac{2}{(x+1)^2}$ |
| d) | $\displaystyle\frac{\cos x}{x}-\frac{\sin x}{x^2}$ | e) | $\displaystyle\frac{1}{\ln x}-\frac{1}{(\ln x)^2}$ | f) | $\displaystyle \frac{\ln x + 1}{\sin x}-\frac{x\ln x \cos x}{\sin^2x}$ |
[redigera] Övning 1.2:2
Beräkna derivatan av följande funktioner och förenkla svaret så långt som möjligt
| a) | $ \sin x^2$ | b) | $e^{x^2+x}$ | c) | $\sqrt{\cos x}$ |
| d) | $\ln \ln x$ | e) | $x(2x+1)^4$ | f) | $\cos \sqrt{1-x}$ |
Facit
Facit till alla delfrågor
| a) | $\cos x^2 \cdot 2x$ | b) | $e^{x^2+x}(2x+1)$ | c) | $\displaystyle - \frac{\sin x}{2\sqrt{\cos x}}$ |
| d) | $\displaystyle\frac{1}{x\ln x}$ | e) | $(2x+1)^3(10x+1)$ | f) | $\displaystyle\frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}$ |
[redigera] Övning 1.2:3
Beräkna derivatan av följande funktioner och förenkla svaret så långt som möjligt
| a) | $ \ln (\sqrt{x} + \sqrt{x+1})$ | b) | $\sqrt{\displaystyle \frac{x+1}{x-1}}$ | c) | $\displaystyle\frac{1}{x\sqrt{1-x^2}}$ |
| d) | $\sin \cos \sin x$ | e) | $e^{\sin x^2}$ | f) | $x^{\tan x}$ |
Facit
Facit till alla delfrågor
| a) | $\displaystyle\frac{1}{2\sqrt{x}\sqrt{x+1}}$ | b) | $\displaystyle - \frac{1}{(x-1)^{3/2}\sqrt{x+1}}$ | c) | $\displaystyle - \frac{1-2x^2}{x^2(1-x^2)^{3/2}}$ |
| d) | $-\cos\cos\sin x \cdot \sin\sin x \cdot \cos x$ | e) | $e^{\sin x^2}\cdot \cos x^2 \cdot 2x$ | f) | $\displaystyle x^{\tan x}\Bigl(\frac{\ln x}{\cos^2x}+\frac{\tan x}{x}\Bigr)$ |
[redigera] Övning 1.2:4
Beräkna andraderivatan av följande funktioner och förenkla svaret så långt som möjligt
| a) | $ \displaystyle\frac{x}{\sqrt{1-x^2}}$ | b) | $x ( \sin \ln x +\cos \ln x )$ |
Facit
Facit till alla delfrågor
| a) | $\displaystyle\frac{3x}{(1-x^2)^{5/2}}$ | b) | $\displaystyle - \frac{2\sin \ln x}{x}$ |





























