2.1 Övningar
Sommarmatte 2
Innehåll |
Övning 2.1:1
Tolka integralerna som areor och bestäm deras värde
| a) | $\displaystyle\int_{-1}^{2} 5\, dx$ | b) | $\displaystyle\int_{0}^{1} (2x+1)\, dx$ |
| c) | $\displaystyle \int_{0}^{2} (3-2x)\, dx$ | d) | $\displaystyle\int_{-1}^{2}|x| \, dx$ |
Facit
Facit till alla delfrågor
| a) | Svar | b) | Svar |
| c) | Svar | d) | Svar |
Övning 2.1:2
Beräkna integralerna
| a) | $\displaystyle\int_{0}^{2} (x^2+3x^3)\, dx$ | b) | $\displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx$ |
| c) | $ \displaystyle\int_{4}^{9} \left(\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}}\right)\, dx$ | d) | $\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx$ |
Övning 2.1:3
Beräkna integralerna
| a) | $\displaystyle\int \sin x\, dx$ | b) | $\displaystyle\int 2\sin x \cos x\, dx$ |
| c) | $ \displaystyle\int e^{2x}(e^x+1)\, dx$ | d) | $\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx$ |
Övning 2.1:4
| a) | Beräkna arean mellan kurvan $y=\sin x$ och $x$-axeln när $0\le x \le \frac{5\pi}{4}$ |
| b) | Beräkna den del av kurvan $y=-x^2+2x+2$ ovanför $x$-axeln |
| c) | Beräkna arean av det ändliga området mellan kurvorna $y=\frac{1}{4}x^2+2$ och $y=8-\frac{1}{8}x^2$ (studentexamen 1965). |
| d) | Beräkna arean av det ändliga området som kurvorna $y=x+2, y=1$ och $y=\frac{1}{x}$ innesluter. |
| e) | beräkna arean av området som ges av olikheterna $x+2\le y\le x^2$. |
Övning 2.1:5
Beräkna integralerna
| a) | $\displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad$ (Ledning: förläng med nämnarens konjugat) |
| b) | $\displaystyle \int \sin^2 x\quad$ (Ledning: skriv om integranden med en trigonometrisk formel) |

