Dag 14
Envariabelanalys
PARTIELL INTEGRATION
Idag fortsätter vi med att leta efter primitiva funktioner och beräkna integraler! Framför allt introducerar vi en metod som kallas $\textit{partialintegration}$ ("integration by parts"). Nämligen, om två funktioner $f$ och $g$ är kontinuerliga i intergrationsintervallet och $F$ är en primitiv funktion till $f$ så gäller: $\int f(x)g(x)dx=F(x)g(x)-\int F(x)g'(x)dx$.
Denna regel för att $\textit{integrera}$ en produkt härleds lätt från regeln för att $\textit{derivera}$ en produkt: $(fg)'=f'g+fg'$. Observera att man kan partialintegrera "en enda" funktion $f(x)$ genom att betrakta den som produkten $1\cdot f(x)$, detta gör man tex i fallet $f(x)=\ln x$. Poängen är att man efter partialintegrationen helst ska erhålla en integral som är enklare att beräkna än den ursprungliga. Ibland kan man behöva partialintegrera upprepade gånger.
6.1 Läs exempel 1, 2, 5 och 6.
6.2 Inversa substitutioner. Läs exempel 1-6. "The $\tan(\theta/2)$ substitution" ingår inte här, men för den som har tid och lust kan det vara intressant att ta en närmare titt på denna speciella substitution.
6.3 Det grundläggande exemplet i detta avsnitt är då nämnaren har skilda och enkla nollställen, som i rutan på s. 362. Detta behandlas i ex. 3-4. Om någon faktor i nämnaren saknar reella nollställen, t ex x2 + 1, måste man göra en annan ansats, som i ex. 5-6. I ex. 7-8 visas vad som händer om någon av faktorerna förekommer flera gånger. Kom ihåg att den beskrivna tekniken fungerar endast då täljaren är av lägre grad än nämnaren.
Gör följande övningsuppgifter:
- 6.1:
- 6.2:
- 6.3:
Om du har lust och tid över kan du göra följande övningsuppgifter som är snäppet svårare:
- 6.1:
- 6.2:
- 6.3:

