Lösning 3.6:4
FörberedandeFysik
(Skillnad mellan versioner)
(Ny sida: a) Eftersom kinetiskt energi <math>= \frac{1}{2}mv^2</math> Kan vi få maximala farten <math>v_m</math> ur maximala kinetiska energin. <math>4,70 J = 21(0,38kg)v^2_m \Rightarrow 4,97 m/s</...) |
|||
Rad 1: | Rad 1: | ||
- | a) Eftersom kinetiskt energi <math>= \frac{1}{2}mv^2</math> | + | a) Eftersom kinetiskt energi <math>= \frac{1}{2}mv^2</math><br\> |
Kan vi få maximala farten <math>v_m</math> ur maximala kinetiska energin. | Kan vi få maximala farten <math>v_m</math> ur maximala kinetiska energin. | ||
Versionen från 15 januari 2010 kl. 12.17
a) Eftersom kinetiskt energi \displaystyle = \frac{1}{2}mv^2
Kan vi få maximala farten \displaystyle v_m ur maximala kinetiska energin.
\displaystyle 4,70 J = 21(0,38kg)v^2_m \Rightarrow 4,97 m/s
b) \displaystyle T = \frac{2\pi }{\omega } betyder att vi måste bestämma \displaystyle \omega.
\displaystyle v = A\omega \cos \omega t \Rightarrow maximal hastighet \displaystyle V_m är \displaystyle v_m = A\omega.
a=!2y) maximal acceleration am är am=A!2 .
Man får T=!2Ù=2Ù22;1rad=s=0;284s
c) vm=A!)A=!vm=4;97m=s22;1rad=s=0;225m
Den maximala fjäderkraften Fm sker vid yttersta punkterna, således
F=ky)Fm=kA=k(0;225m)
Men F=ma)Fm=mam=(0;38kg)(110m=s2)=41;8N
k(0;225m)=41;8N)k=41;8N0;225m=186N=m