Lösning 3.2:3

FörberedandeFysik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (15 mars 2018 kl. 12.57) (redigera) (ogör)
 
(5 mellanliggande versioner visas inte.)
Rad 3: Rad 3:
[[Bild:losning_3_2_3.jpg]]
[[Bild:losning_3_2_3.jpg]]
-
<math>v_1\cos 16^\circ =25m/s \Rightarrow v_1=\frac{25m/s}{\cos 16^\circ}</math><br\>
+
<math>v_1\cos 16^\circ =25\mathrm{m/s} \Rightarrow v_1=\frac{25\mathrm{m/s}}{\cos 16^\circ}</math><br\>
Vi söker:<br\>
Vi söker:<br\>
-
<math>v_1\sin 16,0^\circ =\frac{25m/s}{cos 16^\circ}=(25m/s)\tan 16,0^\circ =7,2m/s</math><br\>
+
<math>v_1\sin 16,0^\circ =\frac{25\mathrm{m/s}}{\cos 16^\circ}=(25\mathrm{m/s})\tan 16,0^\circ =7,2\mathrm{m/s}</math><br\>
-
b) Avstånd = fart <math>\cdot</math> tid <math>D=(25m/s)(1,5s)=37,5m<math><br\>
+
b) <math>\mathrm{Avstånd} = \mathrm{fart} \cdot \mathrm{tid}</math>
-
c) Den horisontella hastigheten är konstant under hela rörelsen. Vi måste bestämma den vertikala utgångshastigheten vystart.
+
<math>D=(25\mathrm{m/s})(1,5\mathrm{s})=37,5\mathrm{m}</math><br\>
-
Accelerationen är Àg vertikalt.
+
-
Vi behandlar den vertikala rörelsen som en separat rätlinjig rörelse.
+
-
Ekvationen: v=v0+at ger att 7;2m/s=v0startÀg(1;5)s=)vystart=21;9m/s
+
-
Enligt vektorteori är utgångsfarten lika med p(21;9m/s)2+(25m/s)2=33;2m/s
+
 
 +
c) Den horisontella hastigheten är konstant under hela rörelsen. Vi måste bestämma den vertikala utgångshastigheten <math>v_{ystart}</math>.<br\>
 +
Accelerationen är <math>-g</math> vertikalt.
 +
Vi behandlar den vertikala rörelsen som en separat rätlinjig rörelse.<br\>
 +
Ekvationen: <math>v=v_0+at</math> ger att <math>7,2\mathrm{m/s}=v_{0start} -g(1,5\mathrm{s}) \Rightarrow v_{ystart} =21,9\mathrm{m/s}</math><br\>
 +
 
 +
Enligt vektorteori är utgångsfarten lika med <math>\sqrt{(21,9\mathrm{m/s})^2+(25\mathrm{m/s})^2}=33,2\mathrm{m/s}</math>

Nuvarande version

a) Låt bollens fart vara

Bild:losning_3_2_3.jpg

\displaystyle v_1\cos 16^\circ =25\mathrm{m/s} \Rightarrow v_1=\frac{25\mathrm{m/s}}{\cos 16^\circ}
Vi söker:

\displaystyle v_1\sin 16,0^\circ =\frac{25\mathrm{m/s}}{\cos 16^\circ}=(25\mathrm{m/s})\tan 16,0^\circ =7,2\mathrm{m/s}


b) \displaystyle \mathrm{Avstånd} = \mathrm{fart} \cdot \mathrm{tid}

\displaystyle D=(25\mathrm{m/s})(1,5\mathrm{s})=37,5\mathrm{m}


c) Den horisontella hastigheten är konstant under hela rörelsen. Vi måste bestämma den vertikala utgångshastigheten \displaystyle v_{ystart}.
Accelerationen är \displaystyle -g vertikalt. Vi behandlar den vertikala rörelsen som en separat rätlinjig rörelse.
Ekvationen: \displaystyle v=v_0+at ger att \displaystyle 7,2\mathrm{m/s}=v_{0start} -g(1,5\mathrm{s}) \Rightarrow v_{ystart} =21,9\mathrm{m/s}

Enligt vektorteori är utgångsfarten lika med \displaystyle \sqrt{(21,9\mathrm{m/s})^2+(25\mathrm{m/s})^2}=33,2\mathrm{m/s}