Lösning 1.1:4
FörberedandeFysik
Rad 48: | Rad 48: | ||
<math>Q_{vatt}=−Q_{kula}\Rightarrow m_{vatt}c_{vatt}(T_2−T_{vatt,1})=−m_{kula}c_{Cu}(T_2−T_{kula,1})</math>, | <math>Q_{vatt}=−Q_{kula}\Rightarrow m_{vatt}c_{vatt}(T_2−T_{vatt,1})=−m_{kula}c_{Cu}(T_2−T_{kula,1})</math>, | ||
+ | |||
och, <math>T_2=\frac{m_{vatt}c_{vatt}T_{vatt,1}+m_{kula}c_{Cu}T_{kula,1}}{m_{vatt}c_{vatt}+m_{kula}c_{Cu}}=300K</math> motsv <math>28^\circ C</math>. | och, <math>T_2=\frac{m_{vatt}c_{vatt}T_{vatt,1}+m_{kula}c_{Cu}T_{kula,1}}{m_{vatt}c_{vatt}+m_{kula}c_{Cu}}=300K</math> motsv <math>28^\circ C</math>. | ||
- | Den slutliga temperaturen, | + | Den slutliga temperaturen, <math>T_2</math> , ligger närmare vattnets begynnelsetemperatur, <math>T_{vatt,1}</math>, än kulans begynnelsetemperatur, <math>T_{kula,1}</math>, eftersom vattnets värmekapacitet, |
- | + | C_{vatt}=m_{vatt}c_{vatt}=630J=K , | |
är nästan 10 gånger högre än kulans värmekapacitet, | är nästan 10 gånger högre än kulans värmekapacitet, |
Versionen från 8 december 2009 kl. 09.54
Det är givet att,
\displaystyle m_{kula}=0,20kg och \displaystyle V_{vatt}=0,15 liter.
Begynnelsetemperaturerna är också givna,
\displaystyle T_{kula,1}=273+80K=353K,
och,
\displaystyle T_{vatt,1}=273+20K=293K.
Mängden vatten ges som en volym så värdet hos densiteten för vatten,
\displaystyle \rho _{vatt}=1,0\cdot 10^3kg/m^3,
hämtas från en tabell och ger,
\displaystyle m_{vatt}=\rho _{vatt}V_{vatt}=0,15kg.
Överförd värme beräknas med,
\displaystyle Q=mc\Delta T=mc(T2−T1),
så värdet hos de specifika värmekapaciteterna hos koppar och vatten,
\displaystyle c_{Cu}=0,39kJ/(kg\cdot K),
och,
\displaystyle c_{vatt}=4,2kJ/(kg\cdot K),
måste också hämtas från en tabell.
Kulans temperatur sjunker under temperaturutjämningen och kulan avger värme,
\displaystyle \Delta T)_{kula}<0 och \displaystyle Q_{kula}<0,
medan vattnets temperatur ökar och vattnet tar emot värme från kulan,
\displaystyle (\Delta T)_{vatt}>0 och \displaystyle Q_{vatt}>0
Ingen värme går förlorad till omgivningen så det värme som avges av kulan förs över till vattnet,
\displaystyle Q_{vatt}=−Q_{kula}.
Resten är matematik;
\displaystyle Q_{vatt}=−Q_{kula}\Rightarrow m_{vatt}c_{vatt}(T_2−T_{vatt,1})=−m_{kula}c_{Cu}(T_2−T_{kula,1}),
och, \displaystyle T_2=\frac{m_{vatt}c_{vatt}T_{vatt,1}+m_{kula}c_{Cu}T_{kula,1}}{m_{vatt}c_{vatt}+m_{kula}c_{Cu}}=300K motsv \displaystyle 28^\circ C.
Den slutliga temperaturen, \displaystyle T_2 , ligger närmare vattnets begynnelsetemperatur, \displaystyle T_{vatt,1}, än kulans begynnelsetemperatur, \displaystyle T_{kula,1}, eftersom vattnets värmekapacitet,
C_{vatt}=m_{vatt}c_{vatt}=630J=K ,
är nästan 10 gånger högre än kulans värmekapacitet,
Ckula=mkulacCu=78J=K .
Notera att beräkningen är oberoende av valet av temperaturskala. Vi kan byta till en temperaturskala med en annan nollpunkt genom att skriva,
Tkula;1=T0kula;1+T0 ,
Tvatt;1=T0vatt;1+T0 .
Den slutliga temperaturen T02 ges då i termer av T0kula;1 och T0vatt;1 på exakt samma sått som T2 ges i termer av Tkula;1 och Tvatt;1. Just do it!