1.5 Tryck och densitet

FörberedandeFysik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (24 april 2018 kl. 09.36) (redigera) (ogör)
 
(27 mellanliggande versioner visas inte.)
Rad 1: Rad 1:
 +
{|border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 +
| style="border-bottom:1px solid #797979" width="5px" |  
 +
{{Mall:Vald flik|[[1.5 Tryck och densitet|Teori]]}}
 +
{{Mall:Ej vald flik|[[1.5 Övningar|Övningar]]}}
 +
| style="border-bottom:1px solid #797979" width="100%"|  
 +
|}
 +
__NOTOC__
<div class="inforuta" style="width: 580px">
<div class="inforuta" style="width: 580px">
-
===Mål och innehåll===
+
==Mål och innehåll==
-
+
-
 
+
====Innehåll====
====Innehåll====
-
* Lufttryck
+
:* Lufttryck
-
* Densitet
+
:* Densitet
-
* Arkimedes princip
+
:* Arkimedes princip
====Läromål====
====Läromål====
Rad 13: Rad 18:
Efter detta avsnitt ska du ha lärt dig att:
Efter detta avsnitt ska du ha lärt dig att:
-
* Redogöra för vad som påverkar trycket hos en vätskepelare.
+
:* Redogöra för vad som påverkar trycket hos en vätskepelare.
-
* Ställa upp och räkna ut trycket hos en vätskepelare.
+
:* Ställa upp och räkna ut trycket hos en vätskepelare.
-
* Beskriva hur man bestämmer ett ämnes densitet.
+
:* Beskriva hur man bestämmer ett ämnes densitet.
-
* Redogöra för hur Arkimedes princip verkar.
+
:* Redogöra för hur Arkimedes princip verkar.
-
* Ställa upp och räkna ut densiteten för olika kroppar med hjälp av Arkimedes princip.</div>
+
:* Ställa upp och räkna ut densiteten för olika kroppar med hjälp av Arkimedes princip.</div>
-
Lufttryck är för de flesta inget konstigt eller svårt att begripa. Högt lufttryck är förknippat med vackert väder och lågtryck med dåligt väder. Några av oss är känsliga för tryckvariationer och det brukar ge besvär med huvudvärk eller ont i leder. Annars känner vi inte av tryckändringar annat än när de går snabbt. Det trycker då i öronen (slår lock) och det märks speciellt vid flygningar.
+
FÖRFATTARE: Christer Johannesson, KTH Fysik
-
Lufttrycket mäts i enheten pascal, förkortad Pa, vilket är detsamma som N (newton) per kvadratmeter. Således är trycket kraften per ytenhet. Enheten pascal används nästan aldrig i sin grundform utan i form av kilopascal (kPa) eller hektopascal (hPa): 1 Pa = 0,001 kPa = 0,01 hPa. De tryckvariationer vi har på marken är vanligtvis inte så stora. Det högsta uppmätta lufttrycket är 108,3 kPa och det lägsta 87,0 kPa. Lufttrycket är ungefär hälften så stort på ca. 6000 meters höjd.
 
-
För tryckluftsdrivna verktyg används vanligtvis tryck mellan 6 och 10 atm där atm står för atmosfärer. En teknisk atmosfär är 100 kPa medan medeltrycket eller det vi kallar normaltrycket är 101,3 kPa. Trycket i gascylindrar eller gasflaskor är vanligtvis upp till 200 atm, vilket svarar mot 20 MPa. Eftersom det finns en mängd olika enheter för trycket bör man hålla sig till Pa, oftast använd i Sverige. För trycket <math>p</math> gäller:
+
Vad är lufttryck? Högt lufttryck är förknippat med vackert väder och lågtryck med dåligt väder. Några av oss är känsliga för tryckvariationer och det brukar ge besvär med huvudvärk eller ont i leder. Annars känner vi inte av tryckändringar annat än när de går snabbt. Det trycker då i öronen (slår lock) och det märks speciellt när man åker flygplan.
 +
Lufttrycket mäts i enheten ''pascal'', förkortad Pa, vilket är detsamma som newton per kvadratmeter (<math>\mathrm{N/m}^2</math>). Således är trycket kraften per ytenhet. Enheten pascal används nästan aldrig i sin grundform utan i form av kilopascal (kPa) eller hektopascal (hPa): <math>1 \,\mathrm{Pa} = 0,001 \,\mathrm{kPa} = 0,01 \,\mathrm{hPa}</math>. De tryckvariationer vi har på marken är vanligtvis inte så stora. Det högsta uppmätta lufttrycket är <math>108,3 \,\mathrm{kPa}</math> och det lägsta <math>87,0 \,\mathrm{kPa}</math>. Lufttrycket är ungefär hälften så stort på ca. 6000 meters höjd.
-
<math>p=F/A</math>
+
För tryckluftsdrivna verktyg används vanligtvis tryck mellan 6 och 10 atm där atm står för atmosfärer. En teknisk atmosfär är <math>100 \,\mathrm{kPa}</math> medan medeltrycket eller det vi kallar normaltrycket är <math>101,3 \,\mathrm{kPa}</math>. Trycket i gascylindrar eller gasflaskor är vanligtvis upp till <math>200 \,\mathrm{atm}</math>, vilket svarar mot <math>20 \,\mathrm{MPa}</math>. Eftersom det finns en mängd olika enheter för trycket bör man hålla sig till Pa, oftast använd i Sverige. För trycket <math>p</math> gäller:
-
där <math>p</math> är trycket i <math>N/m^2</math><br\>
+
<math>p=F/A</math>
-
<math>F</math> är kraften i newton <math>N</math><br\>
+
 
-
<math>A</math> är ytan i <math>m^2</math><br\>
+
 
 +
där <math>p</math> är trycket i <math>\mathrm{N/m}^2</math><br\>
 +
<math>F</math> är kraften i newton <math>\mathrm N</math><br\>
 +
<math>A</math> är ytan i <math>\mathrm m^2</math><br\>
på vilken <math>F</math> verkar.
på vilken <math>F</math> verkar.
Rad 38: Rad 46:
-
<math>p=\rho gh+p_0</math>
+
<math>p=\rho gh+p_0</math>
där <math>\rho</math> är densiten för vätskan<br\>
där <math>\rho</math> är densiten för vätskan<br\>
<math>g</math> är tyngdaccelerationen<br\>
<math>g</math> är tyngdaccelerationen<br\>
-
<math>h</math> är vätskepelarens höjd eller djupet undet en vätskeyta.
+
<math>h</math> är vätskepelarens höjd eller djupet under en vätskeyta.
-
Det paradoxala när det gäller trycket för en vätskepelare är att trycket är obereonde av hur vätskepelaren ser ut. Den kan vara konisk, ha variaerande tvärsnittsyta eller ha krökar mm. Endast höjden (djupet) är avgörande. Trycket för en viss vätskepelares höjd alltid blir detsamma.
+
Det paradoxala när det gäller trycket för en vätskepelare är att trycket är oberoende av hur vätskepelaren ser ut. Den kan vara konisk, ha varierande tvärsnittsyta eller ha krökar mm. Endast höjden (djupet) är avgörande. Trycket för en viss vätskepelares höjd alltid blir detsamma.
-
Densitet eller täthet är ett mått på hur mycket ett material väger i förhållande till sin volym. Grundenheten för massan är kg och för volymen m3 , vilket ger att grundenheten för densiteten är kg=m3 . Man kan också säga att det är ett mått på hur tätt ett material är packat. För ett fast material på atomnivå är det mest tomrum mellan atomerna eller jonerna. För metaller är det joner då de har lämnat sina ledningselektroner att sväva fritt mellan atomerna. Enheten för densitet är kg=m3 och symbolen är Ú . I fasta material skiljer avståndet mellan atomerna eller jonerna ganska lite och i princip kan man säga att ju högre atomvikten är, desto högre blir materialets eller ämnets densitet.
+
 
 +
Densitet eller täthet är ett mått på hur mycket ett material väger i förhållande till sin volym. Grundenheten för massan är kg och för volymen <math>\mathrm m^3</math> , vilket ger att grundenheten för densiteten är <math>\mathrm{kg/m}^3</math>. Man kan också säga att det är ett mått på hur tätt ett material är packat. För ett fast material på atomnivå är det mest tomrum mellan atomerna eller jonerna. För metaller är det joner då de har lämnat sina ledningselektroner att sväva fritt mellan atomerna. Enheten för densitet är <math>\mathrm{kg/m}^3</math> och symbolen är <math>\rho</math> . I fasta material skiljer avståndet mellan atomerna eller jonerna ganska lite och i princip kan man säga att ju högre atomvikten är, desto högre blir materialets eller ämnets densitet.
Densiteten för ett ämne är:
Densiteten för ett ämne är:
-
Ú=m=V
 
-
där Ú är densiten i kg=m3
+
<math>\rho =m/V</math>
-
m är ämnets massa
+
 
-
V är ämnets volym.
+
 
 +
där <math>\rho</math> är densiten i <math>\mathrm{kg/m}^3</math><br\>
 +
<math>m</math> är ämnets massa<br>
 +
<math>V</math> är ämnets volym.
 +
 
 +
==Arkimedes princip==
 +
 
 +
Vätskor påverkar föremål med en lyftkraft. Lyftkrafterna påverkar föremål som antingen helt eller delvis är nedsänkta i vätskor. Men hur fungerar denna lyftkraft egentligen? Om man tar en klump metall och placerar denna i vatten så sjunker denna till botten. Om man däremot formar metallbiten till något som liknar en båt så flyter metallbiten. Uppenbarligen verkar formen på objektet spela roll i sammanhanget.
 +
 
 +
Arkimedes kom fram till vad som idag kallas Arkimedes princip: Lyftkraften på ett föremål i en vätska är lika stor som tyngden av den undanträngda vätskan . Om den undanträngda vätskan har volymen <math>V</math> och densiteten <math> \rho </math> så är dess massa <math> m = \rho V </math> och dess tyngd <math> mg = \rho Vg </math>. Vattnet påverkar alltså föremålet med denna kraft uppåt. Gravitationen å andra sidan påverkar (förstås) föremålet med en kraft <math>mg</math> nedåt. Beroende på vilken av dessa krafter som är störst så sjunker eller flyter föremålet!
 +
 
 +
===Exempel===
 +
 
 +
En barkbåt flyter på vattnet och väger <math>0,16 \,\mathrm{kg}</math>. Hur stor är lyftkraften på denna barkbåt och hur stor volym vatten tränger båten undan?
 +
 
 +
'''Lösning'''
 +
 
 +
Eftersom barkbåten flyter på vattnet råder kraftjämvikt, <math> F_{\mathrm{lyft}} = \rho V g = mg = 0,16 \cdot 9,82 = 1,6 \,\mathrm{N}</math>. Från kraftjämvikten <math>\rho V g = mg</math> kan vi också lösa ut det undanträngda vattnets volym: <math>\rho V g = mg \quad \Rightarrow \quad \rho V = m \quad \Rightarrow \quad V = m/\rho = 0,16/998 = 1,6 \cdot 10^{-4} \,\mathrm m^3 = 0,16 \,\mathrm l</math>
 +
 
 +
(vattnets densitet <math> \rho = 998 \,\mathrm{kg/m}^3</math> fås från tabell)
 +
 
 +
<div class="inforuta" style="width: 580px">
 +
===Råd för inläsning===
 +
 +
 
 +
====Lästips====
 +
 
 +
För dig som vill fördjupa dig ytterligare eller behöver en längre förklaring:
 +
 
 +
:HEUREKA! Fysik 1, kap 3, sid 43-64.
 +
 
 +
====Länktips====
 +
 
 +
:[http://sv.wikipedia.org/wiki/Densitet Läs mer om densitet på Wikipedia].
 +
 
 +
:[http://www.thenakedscientists.com/HTML/content/kitchenscience/exp/how-does-a-submarine-work/ Experimentera och lär dig mer om hur en ubåt fungerar]</div>

Nuvarande version

       Teori          Övningar      

Mål och innehåll

Innehåll

  • Lufttryck
  • Densitet
  • Arkimedes princip

Läromål

Efter detta avsnitt ska du ha lärt dig att:

  • Redogöra för vad som påverkar trycket hos en vätskepelare.
  • Ställa upp och räkna ut trycket hos en vätskepelare.
  • Beskriva hur man bestämmer ett ämnes densitet.
  • Redogöra för hur Arkimedes princip verkar.
  • Ställa upp och räkna ut densiteten för olika kroppar med hjälp av Arkimedes princip.

FÖRFATTARE: Christer Johannesson, KTH Fysik


Vad är lufttryck? Högt lufttryck är förknippat med vackert väder och lågtryck med dåligt väder. Några av oss är känsliga för tryckvariationer och det brukar ge besvär med huvudvärk eller ont i leder. Annars känner vi inte av tryckändringar annat än när de går snabbt. Det trycker då i öronen (slår lock) och det märks speciellt när man åker flygplan.

Lufttrycket mäts i enheten pascal, förkortad Pa, vilket är detsamma som newton per kvadratmeter (\displaystyle \mathrm{N/m}^2). Således är trycket kraften per ytenhet. Enheten pascal används nästan aldrig i sin grundform utan i form av kilopascal (kPa) eller hektopascal (hPa): \displaystyle 1 \,\mathrm{Pa} = 0,001 \,\mathrm{kPa} = 0,01 \,\mathrm{hPa}. De tryckvariationer vi har på marken är vanligtvis inte så stora. Det högsta uppmätta lufttrycket är \displaystyle 108,3 \,\mathrm{kPa} och det lägsta \displaystyle 87,0 \,\mathrm{kPa}. Lufttrycket är ungefär hälften så stort på ca. 6000 meters höjd.

För tryckluftsdrivna verktyg används vanligtvis tryck mellan 6 och 10 atm där atm står för atmosfärer. En teknisk atmosfär är \displaystyle 100 \,\mathrm{kPa} medan medeltrycket eller det vi kallar normaltrycket är \displaystyle 101,3 \,\mathrm{kPa}. Trycket i gascylindrar eller gasflaskor är vanligtvis upp till \displaystyle 200 \,\mathrm{atm}, vilket svarar mot \displaystyle 20 \,\mathrm{MPa}. Eftersom det finns en mängd olika enheter för trycket bör man hålla sig till Pa, oftast använd i Sverige. För trycket \displaystyle p gäller:


\displaystyle p=F/A


där \displaystyle p är trycket i \displaystyle \mathrm{N/m}^2
\displaystyle F är kraften i newton \displaystyle \mathrm N
\displaystyle A är ytan i \displaystyle \mathrm m^2
på vilken \displaystyle F verkar.


I vätskor är trycket dels beroende på om vätskan är innesluten i ett kärl eller inte eller på vilket djup det är fråga om. Trycket blir med andra ord trycket i vätskan plus det omgivande trycket \displaystyle p_0 :


\displaystyle p=\rho gh+p_0


där \displaystyle \rho är densiten för vätskan
\displaystyle g är tyngdaccelerationen
\displaystyle h är vätskepelarens höjd eller djupet under en vätskeyta.


Det paradoxala när det gäller trycket för en vätskepelare är att trycket är oberoende av hur vätskepelaren ser ut. Den kan vara konisk, ha varierande tvärsnittsyta eller ha krökar mm. Endast höjden (djupet) är avgörande. Trycket för en viss vätskepelares höjd alltid blir detsamma.


Densitet eller täthet är ett mått på hur mycket ett material väger i förhållande till sin volym. Grundenheten för massan är kg och för volymen \displaystyle \mathrm m^3 , vilket ger att grundenheten för densiteten är \displaystyle \mathrm{kg/m}^3. Man kan också säga att det är ett mått på hur tätt ett material är packat. För ett fast material på atomnivå är det mest tomrum mellan atomerna eller jonerna. För metaller är det joner då de har lämnat sina ledningselektroner att sväva fritt mellan atomerna. Enheten för densitet är \displaystyle \mathrm{kg/m}^3 och symbolen är \displaystyle \rho . I fasta material skiljer avståndet mellan atomerna eller jonerna ganska lite och i princip kan man säga att ju högre atomvikten är, desto högre blir materialets eller ämnets densitet.

Densiteten för ett ämne är:


\displaystyle \rho =m/V


där \displaystyle \rho är densiten i \displaystyle \mathrm{kg/m}^3
\displaystyle m är ämnets massa
\displaystyle V är ämnets volym.

Arkimedes princip

Vätskor påverkar föremål med en lyftkraft. Lyftkrafterna påverkar föremål som antingen helt eller delvis är nedsänkta i vätskor. Men hur fungerar denna lyftkraft egentligen? Om man tar en klump metall och placerar denna i vatten så sjunker denna till botten. Om man däremot formar metallbiten till något som liknar en båt så flyter metallbiten. Uppenbarligen verkar formen på objektet spela roll i sammanhanget.

Arkimedes kom fram till vad som idag kallas Arkimedes princip: Lyftkraften på ett föremål i en vätska är lika stor som tyngden av den undanträngda vätskan . Om den undanträngda vätskan har volymen \displaystyle V och densiteten \displaystyle \rho så är dess massa \displaystyle m = \rho V och dess tyngd \displaystyle mg = \rho Vg . Vattnet påverkar alltså föremålet med denna kraft uppåt. Gravitationen å andra sidan påverkar (förstås) föremålet med en kraft \displaystyle mg nedåt. Beroende på vilken av dessa krafter som är störst så sjunker eller flyter föremålet!

Exempel

En barkbåt flyter på vattnet och väger \displaystyle 0,16 \,\mathrm{kg}. Hur stor är lyftkraften på denna barkbåt och hur stor volym vatten tränger båten undan?

Lösning

Eftersom barkbåten flyter på vattnet råder kraftjämvikt, \displaystyle F_{\mathrm{lyft}} = \rho V g = mg = 0,16 \cdot 9,82 = 1,6 \,\mathrm{N}. Från kraftjämvikten \displaystyle \rho V g = mg kan vi också lösa ut det undanträngda vattnets volym: \displaystyle \rho V g = mg \quad \Rightarrow \quad \rho V = m \quad \Rightarrow \quad V = m/\rho = 0,16/998 = 1,6 \cdot 10^{-4} \,\mathrm m^3 = 0,16 \,\mathrm l

(vattnets densitet \displaystyle \rho = 998 \,\mathrm{kg/m}^3 fås från tabell)

Råd för inläsning

Lästips

För dig som vill fördjupa dig ytterligare eller behöver en längre förklaring:

HEUREKA! Fysik 1, kap 3, sid 43-64.

Länktips

Läs mer om densitet på Wikipedia.
Experimentera och lär dig mer om hur en ubåt fungerar