Processing Math: 53%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösning 1.1:4

FörberedandeFysik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (6 april 2018 kl. 15.04) (redigera) (ogör)
 
(En mellanliggande version visas inte.)
Rad 1: Rad 1:
Det är givet att,
Det är givet att,
-
<math>m_{kula}=0,20kg</math> och <math>V_{vatt}=0,15 liter</math>.
+
<math>m_{\mathrm{kula}}=0,20 \,\mathrm{kg}</math> och <math>V_{\mathrm{vatt}}=0,15 \,\mathrm{liter}</math>.
Begynnelsetemperaturerna är också givna,
Begynnelsetemperaturerna är också givna,
-
<math>T_{kula,1}=273+80K=353K</math>,
+
<math>T_{\mathrm{kula,1}}=273+80 \,\mathrm{K}=353 \,\mathrm{K}</math>,
och,
och,
-
<math>T_{vatt,1}=273+20K=293K</math>.
+
<math>T_{\mathrm{vatt,1}}=273+20 \,\mathrm{K}=293 \,\mathrm{K}</math>.
Mängden vatten ges som en volym så värdet hos densiteten för vatten,
Mängden vatten ges som en volym så värdet hos densiteten för vatten,
-
<math>\rho _{vatt}=1,0\cdot 10^3kg/m^3</math>,
+
<math>\rho _{\mathrm{vatt}}=1,0\cdot 10^3 \,\mathrm{kg/m^3}</math>,
hämtas från en tabell och ger,
hämtas från en tabell och ger,
-
<math>m_{vatt}=\rho _{vatt}V_{vatt}=0,15kg</math>.
+
<math>m_{\mathrm{vatt}}=\rho _{\mathrm{vatt}}V_{\mathrm{vatt}}=0,15 \mathrm{kg}</math>.
Överförd värme beräknas med,
Överförd värme beräknas med,
-
<math>Q=mc\Delta T=mc(T2−T1)</math>,
+
<math>Q=mc\Delta T=mc(T_2−T_1)</math>,
så värdet hos de specifika värmekapaciteterna hos koppar och vatten,
så värdet hos de specifika värmekapaciteterna hos koppar och vatten,
-
<math>c_{Cu}=0,39kJ/(kg\cdot K)</math>,
+
<math>c_{\mathrm{Cu}}=0,39 \,\mathrm{kJ/(kg\cdot K)}</math>,
och,
och,
-
<math>c_{vatt}=4,2kJ/(kg\cdot K)</math>,
+
<math>c_{\mathrm{vatt}}=4,2 \,\mathrm{kJ/(kg\cdot K)}</math>,
måste också hämtas från en tabell.
måste också hämtas från en tabell.
Rad 35: Rad 35:
Kulans temperatur sjunker under temperaturutjämningen och kulan avger värme,
Kulans temperatur sjunker under temperaturutjämningen och kulan avger värme,
-
<math>\Delta T)_{kula}<0</math> och <math>Q_{kula}<0</math>,
+
<math>(\Delta T)_{\mathrm{kula}}<0</math> och <math>Q_{\mathrm{kula}}<0</math>,
medan vattnets temperatur ökar och vattnet tar emot värme från kulan,
medan vattnets temperatur ökar och vattnet tar emot värme från kulan,
-
<math>(\Delta T)_{vatt}>0</math> och <math>Q_{vatt}>0</math>
+
<math>(\Delta T)_{\mathrm{vatt}}>0</math> och <math>Q_{\mathrm{vatt}}>0</math>
Ingen värme går förlorad till omgivningen så det värme som avges av kulan förs över till vattnet,
Ingen värme går förlorad till omgivningen så det värme som avges av kulan förs över till vattnet,
-
<math>Q_{vatt}=−Q_{kula}</math>.
+
<math>Q_{\mathrm{vatt}}=−Q_{\mathrm{kula}}</math>.
Resten är matematik;
Resten är matematik;
-
<math>Q_{vatt}=−Q_{kula}\Rightarrow m_{vatt}c_{vatt}(T_2−T_{vatt,1})=−m_{kula}c_{Cu}(T_2−T_{kula,1})</math>,
+
<math>Q_{\mathrm{vatt}}=−Q_{\mathrm{kula}}\Rightarrow m_{\mathrm{vatt}}c_{\mathrm{vatt}}(T_2−T_{\mathrm{vatt,1}})=−m_{\mathrm{kula}}c_{\mathrm{Cu}}(T_2−T_{\mathrm{kula,1}})</math>,
-
och, <math>T_2=\frac{m_{vatt}c_{vatt}T_{vatt,1}+m_{kula}c_{Cu}T_{kula,1}}{m_{vatt}c_{vatt}+m_{kula}c_{Cu}}=300K</math> motsv <math>28^\circ C</math>.
+
och, <math>T_2=\frac{m_{\mathrm{vatt}}c_{\mathrm{vatt}}T_{\mathrm{vatt,1}}+m_{\mathrm{kula}}c_{\mathrm{Cu}}T_{\mathrm{kula,1}}}{m_{\mathrm{vatt}}c_{\mathrm{vatt}}+m_{\mathrm{kula}}c_{\mathrm{Cu}}}=300 \,\mathrm{K}</math> motsv <math>28^\circ C</math>.
-
Den slutliga temperaturen, <math>T_2</math> , ligger närmare vattnets begynnelsetemperatur, <math>T_{vatt,1}</math>, än kulans begynnelsetemperatur, <math>T_{kula,1}</math>, eftersom vattnets värmekapacitet,
+
Den slutliga temperaturen, <math>T_2</math> , ligger närmare vattnets begynnelsetemperatur, <math>T_{\mathrm{vatt,1}}</math>, än kulans begynnelsetemperatur, <math>T_{\mathrm{kula,1}}</math>, eftersom vattnets värmekapacitet,
-
<math>C_{vatt}=m_{vatt}c_{vatt}=630J/K</math>,
+
<math>C_{\mathrm{vatt}}=m_{\mathrm{vatt}}c_{\mathrm{vatt}}=630 \,\mathrm{J/K}</math>,
är nästan 10 gånger högre än kulans värmekapacitet,
är nästan 10 gånger högre än kulans värmekapacitet,
-
<math>C_{kula}=m_{kula}c_{Cu}=78J/K</math>.
+
<math>C_{\mathrm{kula}}=m_{\mathrm{kula}}c_{\mathrm{Cu}}=78 \,\mathrm{J/K}</math>.
Notera att beräkningen är oberoende av valet av temperaturskala. Vi kan byta till en temperaturskala med en annan nollpunkt genom att skriva,
Notera att beräkningen är oberoende av valet av temperaturskala. Vi kan byta till en temperaturskala med en annan nollpunkt genom att skriva,
-
<math>T_{kula,1}=T'_{kula,1}+T_0</math>,
+
<math>T_{\mathrm{kula,1}}=T'_{\mathrm{kula,1}}+T_0</math>,
-
<math>T_{vatt,1}=T'_{vatt,1}+T_0</math>.
+
<math>T_{\mathrm{vatt,1}}=T'_{\mathrm{vatt,1}}+T_0</math>.
-
Den slutliga temperaturen <math>T'_2</math> ges då i termer av <math>T'_{kula,1}</math> och <math>T'_{vatt,1}</math> på exakt samma sått som <math>T_2</math> ges i termer av <math>T_{kula,1}</math> och <math>T_{vatt,1}</math>. Just do it!
+
Den slutliga temperaturen <math>T'_2</math> ges då i termer av <math>T'_{\mathrm{kula,1}}</math> och <math>T'_{\mathrm{vatt,1}}</math> på exakt samma sätt som <math>T_2</math> ges i termer av <math>T_{\mathrm{kula,1}}</math> och <math>T_{\mathrm{vatt,1}}</math>. Just do it!

Nuvarande version

Det är givet att,

mkula=020kg och Vvatt=015liter.

Begynnelsetemperaturerna är också givna,

Tkula1=273+80K=353K,

och,

Tvatt1=273+20K=293K.

Mängden vatten ges som en volym så värdet hos densiteten för vatten,

vatt=10103kgm3,

hämtas från en tabell och ger,

mvatt=vattVvatt=015kg.

Överförd värme beräknas med,

Q=mcT=mc(T2T1),

så värdet hos de specifika värmekapaciteterna hos koppar och vatten,

cCu=039kJ(kgK),

och,

cvatt=42kJ(kgK),

måste också hämtas från en tabell.

Kulans temperatur sjunker under temperaturutjämningen och kulan avger värme,

(T)kula0 och Qkula0,

medan vattnets temperatur ökar och vattnet tar emot värme från kulan,

(T)vatt0 och Qvatt0

Ingen värme går förlorad till omgivningen så det värme som avges av kulan förs över till vattnet,

Qvatt=Qkula.

Resten är matematik;

Qvatt=Qkulamvattcvatt(T2Tvatt1)=mkulacCu(T2Tkula1),


och, T2=mvattcvatt+mkulacCumvattcvattTvatt1+mkulacCuTkula1=300K motsv \displaystyle 28^\circ C.


Den slutliga temperaturen, \displaystyle T_2 , ligger närmare vattnets begynnelsetemperatur, \displaystyle T_{\mathrm{vatt,1}}, än kulans begynnelsetemperatur, \displaystyle T_{\mathrm{kula,1}}, eftersom vattnets värmekapacitet,

\displaystyle C_{\mathrm{vatt}}=m_{\mathrm{vatt}}c_{\mathrm{vatt}}=630 \,\mathrm{J/K},

är nästan 10 gånger högre än kulans värmekapacitet,

\displaystyle C_{\mathrm{kula}}=m_{\mathrm{kula}}c_{\mathrm{Cu}}=78 \,\mathrm{J/K}.

Notera att beräkningen är oberoende av valet av temperaturskala. Vi kan byta till en temperaturskala med en annan nollpunkt genom att skriva,

\displaystyle T_{\mathrm{kula,1}}=T'_{\mathrm{kula,1}}+T_0,

\displaystyle T_{\mathrm{vatt,1}}=T'_{\mathrm{vatt,1}}+T_0.

Den slutliga temperaturen \displaystyle T'_2 ges då i termer av \displaystyle T'_{\mathrm{kula,1}} och \displaystyle T'_{\mathrm{vatt,1}} på exakt samma sätt som \displaystyle T_2 ges i termer av \displaystyle T_{\mathrm{kula,1}} och \displaystyle T_{\mathrm{vatt,1}}. Just do it!