Lösning 5.1:2

FörberedandeFysik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
(Ny sida: a) <math>l = l_0 \sqrt{1-(v/c)^2} = 2800\, \textrm{m} \sqrt{1-(8{,}0\cdot 10^7\,\textrm{m/s}/c)^2} \approx 2700\, \textrm{m} </math> b)<math>\Delta t = \displaystyle\frac{2800\, \textrm{m}...)
Nuvarande version (13 december 2017 kl. 10.56) (redigera) (ogör)
(Ny sida: a) <math>l = l_0 \sqrt{1-(v/c)^2} = 2800\, \textrm{m} \sqrt{1-(8{,}0\cdot 10^7\,\textrm{m/s}/c)^2} \approx 2700\, \textrm{m} </math> b)<math>\Delta t = \displaystyle\frac{2800\, \textrm{m}...)
 

Nuvarande version

a) \displaystyle l = l_0 \sqrt{1-(v/c)^2} = 2800\, \textrm{m} \sqrt{1-(8{,}0\cdot 10^7\,\textrm{m/s}/c)^2} \approx 2700\, \textrm{m}

b)\displaystyle \Delta t = \displaystyle\frac{2800\, \textrm{m}}{8{,}0\cdot 10^7\,\textrm{m/s}} = 3{,}5\, 10^{-5}\, \textrm{s}

c)\displaystyle \Delta t = \displaystyle\frac{l\, \textrm{m}}{8{,}0\cdot 10^7\,\textrm{m/s}} = 3,4\, 10^{-5}\, \textrm{s}