Lösning 5.5:3

FörberedandeFysik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
(Ny sida: a) <math>\mathrm{Q = (M_{2H} + M_{3H} –\, M_{He} + m_n)c^2}</math> <math>\mathrm{(M_{2H})c^2 = (M_H + m_n)c^2 – 2\cdot 1{,}16\, MeV}</math> <math>\mathrm{(M_{3H})c^2 = (M_H + 2m_n)c^2...)
Nuvarande version (13 december 2017 kl. 14.40) (redigera) (ogör)
(Ny sida: a) <math>\mathrm{Q = (M_{2H} + M_{3H} –\, M_{He} + m_n)c^2}</math> <math>\mathrm{(M_{2H})c^2 = (M_H + m_n)c^2 – 2\cdot 1{,}16\, MeV}</math> <math>\mathrm{(M_{3H})c^2 = (M_H + 2m_n)c^2...)
 

Nuvarande version

a) \displaystyle \mathrm{Q = (M_{2H} + M_{3H} –\, M_{He} + m_n)c^2}

\displaystyle \mathrm{(M_{2H})c^2 = (M_H + m_n)c^2 – 2\cdot 1{,}16\, MeV}

\displaystyle \mathrm{(M_{3H})c^2 = (M_H + 2m_n)c^2 – 3\cdot 2{,}83\, MeV}

\displaystyle \mathrm{(M_{He})c^2 = (2M_H + 2m_n)c^2 – 4\cdot 7{,}07\, MeV}

vilket ger \displaystyle \textrm{Q} = -2\cdot 1{,}16 -3\cdot 2{,}83 - (-7\cdot 7{,}07) = 17{,}47 \textrm{ MeV}

b) \displaystyle \mathrm{U = e^2/4\pi \varepsilon_0(R_{2H} + R_{3H}) = (R = R_0\, A^{1/3},\, R_0 = 1,4\, fm) = 380\, keV}