Lösning 1.6:3

FörberedandeFysik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 22: Rad 22:
Båda leden divideras med <math>V</math> och <math>M</math> flyttas ur parentesen
Båda leden divideras med <math>V</math> och <math>M</math> flyttas ur parentesen
-
<math>p=\frac{m}{V}\cdot \frac{RT}{M}</math>
+
<math>p=\frac{m}{V}\cdot \frac{RT}{M} \Leftrightarrow m=\frac{pVM}{RT}</math>
Densiteten är
Densiteten är

Versionen från 15 december 2017 kl. 09.34

Ideala gaslagen används.

\displaystyle p\cdot V=n\cdot RT

där \displaystyle p är trycket i \displaystyle Pa
\displaystyle V är volymen i \displaystyle m^3
\displaystyle n är antal \displaystyle kmol
\displaystyle R är allmänna gaskonstanten \displaystyle 8314 J/(kmol\cdot K)
\displaystyle T är absoluta temperaturen i \displaystyle K

Antal mol kan skrivas som luftens massa genom luftens molekylvikten

\displaystyle n=\frac{m}{M}

\displaystyle m är luftens massa, \displaystyle M är luftens molekylvikt, \displaystyle M för luft är \displaystyle 29 kg/kmol

Ovanstående uttryck förs in i ideala gaslagen

\displaystyle p\cdot V=\frac{m}{M}\cdot RT

Båda leden divideras med \displaystyle V och \displaystyle M flyttas ur parentesen

\displaystyle p=\frac{m}{V}\cdot \frac{RT}{M} \Leftrightarrow m=\frac{pVM}{RT}

Densiteten är

\displaystyle \rho = m/V där \displaystyle \rho är densiteten, \displaystyle m är luftens massa, \displaystyle V är volymen

Ur ovanstående uttryck får man

\displaystyle \rho =\frac{m}{V}=\rho \cdot \frac{M}{RT}

Med insatta värden

Massan

\displaystyle m=\frac{pVM}{RT} =\frac{(300\cdot 10^5 Pa)\cdot (0,010 m^3)\cdot (29 kg/kmol)}{(8314 J/(kmol\cdot K))\cdot (273+7 K)}=\frac{300\cdot 10^5\cdot 0,010\cdot 29}{8314\cdot 280} = 3,74 kg

Densiteten

\displaystyle \rho =\frac{m}{V}=\frac{3,74 kg}{0,010 m^3}=374 kg/m^3

Om man vill kan man istället först räkna fram densiteten och med den som utgångspunkt räkna fram massan.