Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösning 3.2:4

FörberedandeFysik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (15 mars 2018 kl. 13.07) (redigera) (ogör)
 
Rad 1: Rad 1:
-
a) <math>fart=\frac{avstånd}{tid}=\frac{15m}{1,3s}=11,5m/s</math><br\>
+
a) <math>\mathrm{fart}=\frac{\mathrm{avstånd}}{\mathrm{tid}}=\frac{15\mathrm{m}}{1,3\mathrm{s}}=11,5\mathrm{m/s}</math><br\>
-
b) Eftersom <math>11,5m/s=v_0\cos 38^\circ \Rightarrow v_0=\frac{11,5m/s}{\cos 38^\circ} =14,6 m/s</math><br\>
+
b) Eftersom <math>11,5\mathrm{m/s}=v_0\cos 38^\circ \Rightarrow v_0=\frac{11,5\mathrm{m/s}}{\cos 38^\circ} =14,6\mathrm{ m/s}</math><br\>
c) Först bestäms den vertikala utgångshastigheten <math>v_{0vert}</math><br\>
c) Först bestäms den vertikala utgångshastigheten <math>v_{0vert}</math><br\>
-
<math>v_{0vert}=(14,6m/s)\sin 38^\circ =9,0 m/s</math> Accelerationen är <math>-g</math> vertikalt. Vi behandlar den vertikala rörelsen som en separat rätlinjig rörelse. Ekvationen: <math>s=v_0t+\frac{1}{2}at^2</math> ger att <math>H=(9m/s)(1,3s)-\frac{1}{2}(-9,82m/s^2)(1,3s)^2=3,4m</math>
+
<math>v_{0vert}=(14,6\mathrm{m/s})\sin 38^\circ =9,0 \mathrm{m/s}</math>
 +
 
 +
Accelerationen är <math>-g</math> vertikalt. Vi behandlar den vertikala rörelsen som en separat rätlinjig rörelse. Ekvationen: <math>s=v_0t+\frac{1}{2}at^2</math> ger att <math>H=(9\mathrm{m/s})(1,3\mathrm{s})-\frac{1}{2}(-9,82\mathrm{m/s}^2)(1,3\mathrm{s})^2=3,4\mathrm{m}</math>

Nuvarande version

a) fart=tidavstånd=13s15m=115ms

b) Eftersom 115ms=v0cos38v0=cos38115ms=146ms


c) Först bestäms den vertikala utgångshastigheten v0vert
v0vert=(146ms)sin38=90ms

Accelerationen är g vertikalt. Vi behandlar den vertikala rörelsen som en separat rätlinjig rörelse. Ekvationen: s=v0t+21at2 ger att H=(9ms)(13s)21(982ms2)(13s)2=34m