Lösning 1.1:4

FörberedandeFysik

Hoppa till: navigering, sök

Det är givet att,

\displaystyle m_{kula}=0,20kg och \displaystyle V_{vatt}=0,15 liter.

Begynnelsetemperaturerna är också givna,

\displaystyle T_{kula,1}=273+80K=353K,

och,

\displaystyle T_{vatt,1}=273+20K=293K.

Mängden vatten ges som en volym så värdet hos densiteten för vatten,

\displaystyle \rho _{vatt}=1,0\cdot 10^3kg/m^3,

hämtas från en tabell och ger,

\displaystyle m_{vatt}=\rho _{vatt}V_{vatt}=0,15kg.

Överförd värme beräknas med,

\displaystyle Q=mc\Delta T=mc(T2−T1),

så värdet hos de specifika värmekapaciteterna hos koppar och vatten,

\displaystyle c_{Cu}=0,39kJ/(kg\cdot K),

och,

\displaystyle c_{vatt}=4,2kJ/(kg\cdot K),

måste också hämtas från en tabell.

Kulans temperatur sjunker under temperaturutjämningen och kulan avger värme,

\displaystyle \Delta T)_{kula}<0 och \displaystyle Q_{kula}<0,

medan vattnets temperatur ökar och vattnet tar emot värme från kulan,

\displaystyle (\Delta T)_{vatt}>0 och \displaystyle Q_{vatt}>0

Ingen värme går förlorad till omgivningen så det värme som avges av kulan förs över till vattnet,

\displaystyle Q_{vatt}=−Q_{kula}.

Resten är matematik;

\displaystyle Q_{vatt}=−Q_{kula}\Rightarrow m_{vatt}c_{vatt}(T_2−T_{vatt,1})=−m_{kula}c_{Cu}(T_2−T_{kula,1}),


och, \displaystyle T_2=\frac{m_{vatt}c_{vatt}T_{vatt,1}+m_{kula}c_{Cu}T_{kula,1}}{m_{vatt}c_{vatt}+m_{kula}c_{Cu}}=300K motsv \displaystyle 28^\circ C.

Den slutliga temperaturen, \displaystyle T_2 , ligger närmare vattnets begynnelsetemperatur, \displaystyle T_{vatt,1}, än kulans begynnelsetemperatur, \displaystyle T_{kula,1}, eftersom vattnets värmekapacitet,

C_{vatt}=m_{vatt}c_{vatt}=630J=K ,

är nästan 10 gånger högre än kulans värmekapacitet,

Ckula=mkulacCu=78J=K .

Notera att beräkningen är oberoende av valet av temperaturskala. Vi kan byta till en temperaturskala med en annan nollpunkt genom att skriva,

Tkula;1=T0kula;1+T0 ,

Tvatt;1=T0vatt;1+T0 .

Den slutliga temperaturen T02 ges då i termer av T0kula;1 och T0vatt;1 på exakt samma sått som T2 ges i termer av Tkula;1 och Tvatt;1. Just do it!