Lösning 1.1:1

FörberedandeFysik

Version från den 26 mars 2018 kl. 15.03; Louwah (Diskussion | bidrag)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök

Det är givet att, \displaystyle m=100\,\mathrm{kg} och \displaystyle T_1=273+5\,\mathrm K Den tillförda värmen ges av,

\displaystyle P=\frac{\mathrm{d}Q}{\mathrm{d}t}=10\,\mathrm{kW} under tiden \displaystyle t=60\cdot 60\,\mathrm{s}=3600\,\mathrm{s},

så,

\displaystyle Q=Pt=36\,\mathrm{MJ}.

Den slutliga temperaturen, \displaystyle T_2 beräknas från,

\displaystyle Q=mc\Delta T=mc(T_2-T_1),

så värdet hos den specifika värmekapaciteten hos järn,

\displaystyle c=0,45 \,\mathrm{kJ/(kg\cdot K)}=450 \,\mathrm{J}/(\mathrm{kg\cdot K}),

måste hämtas från en tabell. Den slutliga temeraturen, \displaystyle T_2, ges nu av,

\displaystyle T_2=T_1+\frac{1}{mc}Q=1078\,\mathrm{K},

vilket motsvarar \displaystyle 805^\circ \mathrm{C}. Denna beräkning kan likaväl genomföras med temperaturer på Celsiusskalan, men med tanke på andra typer av beräkningar är det en bra idé att reservera symbolen \displaystyle T för temperaturer på den absoluta Kelvinskalan.