Processing Math: 59%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Kurslitteratur

Förberedande kurs i matematik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 8: Rad 8:
[http://www.math.su.se/~samuel/fb_st12.pdf Förberedande kurs i matematik, 3:e upplagan, andra tryckningen (2012)]
[http://www.math.su.se/~samuel/fb_st12.pdf Förberedande kurs i matematik, 3:e upplagan, andra tryckningen (2012)]
-
<div class="inforuta" style="width:580px;padding:20px">
+
<div class="inforuta" style="width:580px;padding:20px;background-color:#f9edde">
 +
<div style="float:right;margin-left:20px">[[Bild:Kompendiet2.jpg | Kompendiet]]</div>
<p style="color:grey">OM MATERIALET</p>
<p style="color:grey">OM MATERIALET</p>
Rad 15: Rad 16:
Glöm inte att se våra extra [[Räkneövningar | räkneövningar]].
Glöm inte att se våra extra [[Räkneövningar | räkneövningar]].
-
</div>
 
-
<div class="inforuta" style="width:580px;padding:20px">
+
----
 +
 
 +
 
<p style="color:grey">TRYCKT MATERIAL</p>
<p style="color:grey">TRYCKT MATERIAL</p>
-
I Student Lounge kan du beställa hem en tryckt version av kompendiet. Kom ihåg att kontrollera att din adress är aktuell.
+
I Student Lounge kan du '''beställa hem en tryckt version av kompendiet'''. Kom ihåg att kontrollera att din adress är aktuell.
</div>
</div>

Versionen från 12 augusti 2012 kl. 17.35



Kurskompendiet

En PDF-version av kurskompendiet hittar du här:

Förberedande kurs i matematik, 3:e upplagan, andra tryckningen (2012)

Kompendiet

OM MATERIALET

Kompendiet är huvudmaterialet på kursen. Det täcks också av 8 videoföreläsningar. Notera dock att det finns vissa saker som inte tas upp på föreläsningarna. För att klara av kursen måste du läsa kurslitteraturen.

Glöm inte att se våra extra räkneövningar.




TRYCKT MATERIAL

I Student Lounge kan du beställa hem en tryckt version av kompendiet. Kom ihåg att kontrollera att din adress är aktuell.




Specialiseringstexterna till Inlämningsuppgift 5 hittar du här.




Kända tryckfel i 3:e upplagan, första tryckningen:

  • Sida 8, Övning 1.2.5: Ska lyda "Förenkla (a+b)(c+d)c(a+b)"
  • Sida 8, Exempel 1.14. Kvoten k ska vara 5.
  • Sida 11, Lösningsförslag 1: "... Ta reda på resten modulo 5 för de båda talen 4 och 18 ..." ska vara "...Ta reda på resten modulo 5 för de båda talen 11 och 18...".
  • Sida 18, Lösningsförslag 1.40: Ska bli 81257
  • Sida 24, Exempel 1.51: Ska stå att (med b=1, a=x)
  • Sida 31, Exempel 2.8. Det står: "Lös ekvationen x2+x+1". Men x2+x+1 är inte en ekvation. Ska stå: "Lös ekvationen x2+x+1=0".
  • Sida 36, Lösningsförslag till Exempel 2.14. Ska stå x24x+3, inte x4x+3.
  • Sida 37, Lösningsförslag till Exempel 2.17. Ska stå att "q kan anta värdena 12...", respektive "p kan anta värdena 12...", inte "Delarna till q är..." och "Delarna till p är..."
  • Sida 48, Exempel 3.2: Detta exempel innehåller flera fel. Se istället Exempel 3.2.
  • Sida 49: "I exemplet ovan är f injektiv eftersom a, b, c, d alla avbildas..." Byt ut till "I exempel 3.1 är f injektiv eftersom a, b, c, \displaystyle d alla avbildas..."
  • Sida 56: Avsnittet om räta linjer: "Talet \displaystyle m anger den y-koordinat där linjen skär x-axeln". Ska stå "... där linjen skär y-axeln".
  • Sida 97, Lösningsförslag 4.17: ska stå att "Uttrycket \displaystyle \frac{x^3}{3}+C är en primitiv till \displaystyle x^2", inte "till \displaystyle x". På raden under ska det även stå \displaystyle \int x^2, inte \displaystyle \int x.
  • Sida 101, Lösning till övning 1.2.9: \displaystyle 7i7 ska vara \displaystyle 7*17
  • Sida 101, Lösning till övning 1.3.3: Ska vara \displaystyle 40 (=4*2*5).
  • Sida 102, Lösning till övning 1.8.1: Ska vara \displaystyle 5+3i.
  • Sida 104, Lösning till övning 3.3.7: Ska vara \displaystyle y=10x/9+25/3.
  • Sida 105 Lösning till övning 3.4.2 Ska vara: \displaystyle (-3/2-\sqrt{21}/2,4+\sqrt{21}) och \displaystyle (-3/2+\sqrt{21}/2,4-\sqrt{21}) . För \displaystyle x < -3-\sqrt{21}/2 eller \displaystyle x > -3/2+\sqrt{21}/2 gäller att \displaystyle f(x) > g(x) .
  • Sida 105 Lösning till övning 3.3.13 \displaystyle (0,0) ligger inte på kurvan. Man får ju \displaystyle y^2=-1 (inga lösningar i \displaystyle \mathbb{R}) då \displaystyle x=0.
  • Sida 106 Lösning till övning 4.2.4 (c) Ska vara \displaystyle 20\cdot4^9.