4.3 Övningar

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 30 april 2007 kl. 14.05 (redigera)
Annagf (Diskussion | bidrag)
(Övning 4.3:7)
← Gå till föregående ändring
Versionen från 30 april 2007 kl. 14.06 (redigera) (ogör)
Annagf (Diskussion | bidrag)
(Övning 4.3:8)
Gå till nästa ändring →
Rad 453: Rad 453:
<div class=NavContent> <div class=NavContent>
Lösning till delfråga b<br />[[Bild:4_3_8b.gif]] Lösning till delfråga b<br />[[Bild:4_3_8b.gif]]
 +</div>
 +</div>
 +
 +==Övning 4.3:9==
 +<div class="ovning">
 +
 +</div>
 +
 +<div class=NavFrame style="CLEAR: both">
 +<div class=NavHead>Facit&nbsp;</div>
 +<div class=NavContent>
 +Facit till alla delfrågorna<br \>
 +
 +</div>
 +</div>
 +
 +<div class=NavFrame style="CLEAR: both">
 +<div class=NavHead>L&ouml;sning a&nbsp;</div>
 +<div class=NavContent>
 +Lösning till delfråga a<br />[[Bild:4_3_9a.gif]]
 +</div>
 +</div>
 +
 +<div class=NavFrame style="CLEAR: both">
 +<div class=NavHead>L&ouml;sning b&nbsp;</div>
 +<div class=NavContent>
 +Lösning till delfråga b<br />[[Bild:4_3_9b.gif]]
</div> </div>
</div> </div>

Versionen från 30 april 2007 kl. 14.06

Innehåll

Övning 4.3:1

Bestäm de vinklar $v$ mellan $\displaystyle \frac{\pi}{2}$ och $2\pi$ som uppfyller

$\textrm{a) }$ $\cos{v}=\cos{\displaystyle \frac{\pi}{5}}$ $\textrm{b) }$ $\sin{v}=\sin{\displaystyle \frac{\pi}{7}}$ $\textrm{c) }$ $\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}$

Övning 4.3:2

Bestäm de vinklar $v$ mellan 0 och $\pi$ som uppfyller

$\textrm{a) }$ $\cos{v} = \cos{\displaystyle \frac{3\pi}{2}}$ $\textrm{b) }$ $\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}$

Övning 4.3:3

Antag att $-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}$ och att $\sin{v} = a$. Uttryck med hjälp av $a$

$\textrm{a) }$ $\sin{(-v)}$ $\textrm{b) }$ $\sin{(\pi-v)}$ $\textrm{c) }$ $\cos{v}$
$\textrm{d) }$ $\sin{\left(\displaystyle \frac{\pi}{2}-v\right)}$ $\textrm{e) }$ $\cos{\left( \displaystyle \frac{\pi}{2} + v\right)}$ $\textrm{f) }$ $\sin{\left( \displaystyle \frac{\pi}{3} + v \right)}$



Övning 4.3:4

Antag att $0 \leq v \leq \pi$ och att $\cos{v}=b$. Uttryck med hjälp av $b$

$\textrm{a) }$ $\sin^2{v}$ $\textrm{b) }$ $\sin{v}$ $\textrm{c) }$ $\sin{2v}$
$\textrm{d) }$ $\cos{2v}$ $\textrm{e) }$ $\sin{\left( v+\displaystyle \frac{\pi}{4} \right)}$ $\textrm{f) }$ $\cos{\left( v-\displaystyle \frac{\pi}{3} \right)}$



Övning 4.3:5

För en spetsig vinkel $v$ i en triangel gäller att $\sin{v}=\displaystyle \frac{5}{7}$. Bestäm $\cos{v}$ och $\tan{v}$.

Övning 4.3:6

$\textrm{a) }$ Bestäm $\sin{v}$ och $\tan{v}$ om $\cos{v}=\displaystyle \frac{3}{4}$ och $\displaystyle \frac{3\pi}{2} \leq v \leq 2\pi$.
$\textrm{b) }$ Bestäm $\cos{v}$ och $\tan{v}$ om $\sin{v}=\displaystyle \frac{3}{10}$ och $v$ ligger i den andra kvadranten.
$\textrm{c) }$ Bestäm $\sin{v}$ och $\cos{v}$ om $\tan{v}=3$ och $\pi \leq v \leq \displaystyle \frac{3\pi}{2}$

Övning 4.3:7

Bestäm $\sin{(x+y)}$ om

$\textrm{a) }$ $\sin{x}=\displaystyle \frac{2}{3}, \sin{y}=\displaystyle \frac{1}{3}$ och $x,y$ är vinklar i första kvadranten.
$\textrm{b) }$ $\cos{x}=\displaystyle \frac{2}{5}, \cos{y}=\displaystyle \frac{3}{5}$ och $x,y$ är vinklar i första kvadranten.

Övning 4.3:8

Övning 4.3:9

Personliga verktyg