2.2 Övningar

Sommarmatte 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 28 april 2007 kl. 14.28 (redigera)
Annagf (Diskussion | bidrag)
(Övning 2.2:1)
← Gå till föregående ändring
Versionen från 28 april 2007 kl. 14.30 (redigera) (ogör)
Annagf (Diskussion | bidrag)
(Övning 2.2:1)
Gå till nästa ändring →
Rad 2: Rad 2:
<div class="ovning"> <div class="ovning">
L&ouml;s ekvationerna L&ouml;s ekvationerna
- <table width="100%" cellspacing="10px">+<table width="100%" cellspacing="10px">
- <tr align="left">+<tr align="left">
- <td class="ntext">a)</td>+<td class="ntext">a)</td>
- <td class="ntext"> $\displaystyle\{x}-\displaystyle\frac{x+2}{9}=\displaystyle\frac{1}{2}$</td>+<td class="ntext"> $\displaystyle\{x}-{2}$</td>
- <td class="ntext">$\textrm{b) }$</td>+<td class="ntext">b)</td>
- <td class="ntext">$\displaystyle\frac{8x+3}{7}-\displaystyle\frac{5x-7}{4}=2$</td>+<td class="ntext">$\displaystyle\frac{8x+3}{7}-\displaystyle\frac{5x-7}{4}=2$</td>
- </tr>+</tr>
- <tr><td height="5px"/></tr>+<tr><td height="5px"/></tr>
- <tr align="left">+<tr align="left">
- <td class="ntext">$\textrm{c) }$</td>+<td class="ntext">c)</td>
- <td class="ntext">$(x+3)^2-(x-5)^2=6x+4$</td>+<td class="ntext">$(x+3)^2-(x-5)^2=6x+4$</td>
- <td class="ntext">$\textrm{d) }$</td>+<td class="ntext">d)</td>
- <td class="ntext">$(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2$</td>+<td class="ntext">$(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2$</td>
- </tr>+</tr>
- <tr><td height="5px"/></tr>+<tr><td height="5px"/></tr>
- <tr align="left">+</table>
- <td class="ntext">$\textrm{e) }$</td>+
- <td class="ntext"> $\displaystyle\frac{x+3}{x-3}-\displaystyle\frac{x+5}{x-2}=0$</td>+
- <td class="ntext">$\textrm{f) }$</td>+
- <td class="ntext">$\displaystyle\frac{4x}{4x-7}-\displaystyle\frac{1}{2x-3}=1$</td>+
- </tr>+
- <tr><td height="5px"/></tr>+
- </table>+
</div> </div>

Versionen från 28 april 2007 kl. 14.30

Övning 2.2:1

Lös ekvationerna

a) $\displaystyle\{x}-{2}$ b) $\displaystyle\frac{8x+3}{7}-\displaystyle\frac{5x-7}{4}=2$
c) $(x+3)^2-(x-5)^2=6x+4$ d) $(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2$
Personliga verktyg