4.1 Vinklar och cirklar
Sommarmatte 1
Innehåll:
Lärandemål: Efter detta avsnitt ska du ha lärt dig att:
|
|
TeoriVinkelmåttDet finns flera olika enheter för att mäta vinklar, som är praktiska i olika sammanhang. De två vanligaste vinkelmåtten i matematiken är grader och radianer.
\eqalign{&1^\circ = \frac{1}{360} \cdot 2\pi\ \mbox{ radianer } = \frac{\pi}{180}\ \mbox{ radianer,}\cr &1\ \mbox{ radian } = \frac{1}{2\pi} \cdot 360^\circ = \frac{180^\circ}{\pi}\,\mbox{.}}
Dessa omvandlingsfaktorer kan användas för att konvertera mellan grader och radianer.
Exempel 1
I en del sammanhang kan det vara meningsfullt att tala om negativa vinklar eller vinklar som är större än 360°. Då kan man använda att man kan ange samma riktning med flera olika vinklar som skiljer sig från varandra med ett helt antal varv. Exempel 2
AvståndsformelnPythagoras sats är en av de mest kända satserna i matematiken och säger att i en rätvinklig triangel med kateter \,a\, och \,b\,, och hypotenusa \,c\, gäller att Pythagoras sats: c^2 = a^2 + b^2\,\mbox{.}
Bild: figur 3.2.5 Exempel 3 Bild: figur 3.2.6 I triangeln till höger är c^2= 3^2 + 4^2 = 9 +16 = 25
och därför är hypotenusan \,c\, lika med
c=\sqrt{25} = 5\,\mbox{.}
Pythagoras sats kan användas för att beräkna avståndet mellan två punkter i ett koordinatsystem. Avståndsformeln: Avståndet \,d\, mellan två punkter med koordinater \,(x, y)\, och \,(a, b)\, är d = \sqrt{(x – a)^2 + (y – b)^2}\,\mbox{.}
Linjestycket mellan punkterna är hypotenusan i en rätvinklig triangel vars kateter är parallella med koordinataxlarna. Bild: figur 3.2.7 Kateternas längd är lika med beloppet av skillnaden i x- och y-led mellan punkterna, dvs. |x-a| respektive |y-b|. Pythagoras sats ger sedan avståndsformeln. Exempel 4
CirklarEn cirkel består av alla punkter som befinner sig på ett visst fixt avstånd \,r\, från en punkt \,(a,b)\,. Bild:figur 3.2.8 Avståndet \,r\, kallas för cirkelns radie och punkten \,(a,b)\, för cirkelns medelpunkt. Figuren nedan visar andra viktiga cirkelbegrepp.
Exempel 5 En cirkelsektor är given i figuren till höger. Bild: figur 3.2.10
Bild:3.2.11 En punkt \,(x,y)\, ligger på cirkeln som har medelpunkt i \,(a,b)\, och radie \,r\, om dess avstånd till medelpunkten är lika med \,r\,. Detta villkor kan formuleras med avståndsformeln som Cirkelns ekvation: (x – a)^2 + (y – b)^2 = r^2\,\mbox{.}
Exempel 6
Bild: figur 3.2-12-14 Exempel 7
Bild: 3.2.15 och 3.2.16 Exempel 8 Bestäm medelpunkt och radie för den cirkel vars ekvation är \ x^2 + y^2 – 2x + 4y + 1 = 0\,.
(x – a)^2 + (y – b)^2 = r^2
för då kan vi direkt avläsa att medelpunken är \,(a,b)\, och radien är \,r\,.
Börja med att kvadratkomplettera termerna som innehåller \,x\, i vänsterledet \underline{x^2-2x\vphantom{(}} + y^2+4y + 1 =\underline{(x-1)^2-1^2} + y^2+4y + 1
(de understrukna termerna visar kvadratkompletteringen).
Kvadratkomplettera sedan termerna som innehåller y (x-1)^2-1^2 + \underline{y^2+4y} + 1= (x-1)^2-1^2 + \underline{(y+2)^2-2^2} + 1\,\mbox{.}
Vänsterledet är alltså lika med (x-1)^2 + (y+2)^2-4
och flyttar vi över 4 till högerledet är cirkelns ekvation (x-1)^2 + (y+2)^2 = 4 \, \mbox{.}
Vi avläser att medelpunkten är \,(1,-2)\, och radien är \,\sqrt{4}= 2\,.
Råd för inläsning Tänk på att:
Lästips för dig som vill fördjupa dig ytterligare eller behöver en längre förklaring vill vi tipsa om: Läs mer om Pythagoras sats på svenska Wikipedia Läs mer i Mathworld om cirkeln
Interaktivt experiment: sinus och cosinus i enehtscirkeln (Flash)
|
|