3.1 Roots

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m
Line 16: Line 16:
'''Learning outcomes:'''
'''Learning outcomes:'''
-
After this section, you will have learned how to:
+
After this section, you will have learned:
-
*Skriva om ett rotuttryck i potensform.
+
*How to calculate the square root of some simple integers.
-
*Beräkna kvadratroten ur några enkla heltal.
+
*That the square root of a negative number has not been defined.
-
*Kvadratroten ur ett negativt tal inte är definierad.
+
*That the square root of a number denotes the positive root.
-
*Kvadratroten ur ett tal betecknar den positiva roten.
+
*How to manipulate roots in the simplification of expressions containing roo
-
*Hantera rotlagarna i förenkling av rotuttryck.
+
*To recognise when the methods of manipulating roots are valid.
-
*Veta när rotlagarna är giltiga (icke-negativa radikander).
+
*How to simplify expressions containing quadratic roots in the denominator.
-
*Förenkla rotuttryck med kvadratrötter i nämnaren.
+
*When the n:th root of a negative number is defined (n odd).
-
*Veta när ''n'':te roten ur ett negativt tal är definierad (''n'' udda).
+
}}
}}
-
== Kvadratrötter ==
+
== Quadratic roots ==
[[Bild:rotbubbla.gif|right]]
[[Bild:rotbubbla.gif|right]]
-
Symbolen <math>\sqrt{a}</math>, kvadratroten ur <math>a</math>, används som bekant för att beteckna det tal som multiplicerat med sig självt blir <math>a</math>. Man måste dock vara lite mer exakt när man definierar denna symbol.
+
The well-known symbol <math>\sqrt{a}</math>, the square root of <math>a</math>, is used to describe the number that when multiplied by itself gives <math>a</math>. However, one has to be a little more precise in defining this symbol.
-
Ekvationen <math>x^2 = 4</math> har två lösningar <math>x = 2</math> och <math>x = -2</math>, eftersom såväl <math>2\cdot 2 = 4</math> som <math>(-2)\cdot(-2) = 4</math>. Man skulle då kunna tro att <math>\sqrt{4}</math> kan vara vilken som helst av <math>-2</math> och <math>2</math>, dvs. <math>\sqrt{4}= \pm 2</math>, men <math>\sqrt{4}</math> betecknar '''bara''' det positiva talet <math>2</math>.
+
The equation <math>x^2 = 4</math> has two solutions <math>x = 2</math> and <math>x = -2</math>, since both <math>2\cdot 2 = 4</math> and <math>(-2)\cdot(-2) = 4</math>. It would then be logical to suppose that <math>\sqrt{4}</math> can be either <math>-2</math> or <math>2</math>, dvs. <math>\sqrt{4}= \pm 2</math>, but <math>\sqrt{4}</math> only denotes the positive number <math>2</math>.
<div class="regel">
<div class="regel">
-
Kvadratroten <math>\sqrt{a}</math> betecknar det '''icke-negativa tal''' som multiplicerat med sig självt blir <math>a,</math> dvs. den icke-negativa lösningen till ekvationen <math>x^2 = a</math>.
+
Square root <math>\sqrt{a}</math> "means the non-negative number that multiplied by
 +
itself gives <math>a,</math> i.e. the non-negative solution to the equation <math>x^2 = a</math>.
-
Kvadratroten ur <math>a</math> kan även skrivas <math>a^{1/2}</math>.
+
Square root of <math>a</math> can also be written as <math>a^{1/2}</math>.
</div>
</div>
-
Det är därför fel att påstå att <math>\sqrt{4}= \pm 2,</math> men korrekt att säga att ekvationen <math>x^2 = 4</math> har lösningarna <math>x = \pm 2</math>.
+
It is therefore wrong to state that <math>\sqrt{4}= \pm 2,</math> but correct to state that the equation <math>x^2 = 4</math> has the solution <math>x = \pm 2</math>.
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
''' Example 1'''
<ol type="a">
<ol type="a">
-
<li><math>\sqrt{0}=0 \quad</math> eftersom <math>0^2 = 0 \cdot 0
+
<li><math>\sqrt{0}=0 \quad</math> because <math>0^2 = 0 \cdot 0
-
= 0</math> och <math>0</math> är inte negativ.</li>
+
= 0</math> and <math>0</math> is not negative. </li>
-
<li><math>\sqrt{100}=10 \quad</math> eftersom <math> 10^2 = 10 \cdot 10
+
<li><math>\sqrt{100}=10 \quad</math> since <math> 10^2 = 10 \cdot 10
-
= 100 </math> och <math>10</math> är ett positivt tal.</li>
+
= 100 </math> and <math>10</math> is a positive number. </li>
-
<li> <math>\sqrt{0{,}25}=0{,}5 \quad</math> eftersom <math>0{,}5^2
+
<li> <math>\sqrt{0{,}25}=0{,}5 \quad</math> since <math>0{,}5^2
-
= 0{,}5 \cdot 0{,}5 = 0{,}25 </math> och <math>0{,}5</math> är positiv.</li>
+
= 0{,}5 \cdot 0{,}5 = 0{,}25 </math> and <math>0{,}5</math> is positive. </li>
-
<li><math>\sqrt{2} \approx 1{,}4142 \quad</math> eftersom <math>1{,}4142
+
<li><math>\sqrt{2} \approx 1{,}4142 \quad</math> since <math>1{,}4142
-
\cdot 1{,}4142 \approx 2</math> och <math>1{,}4142</math> är positiv.</li>
+
\cdot 1{,}4142 \approx 2</math> and <math>1{,}4142</math> is positive. </li>
-
<li>Ekvationen <math>x^2=2</math> har lösningarna <math>x=\sqrt{2}
+
<li> The equation <math>x^2=2</math> has the solutions <math>x=\sqrt{2}
-
\approx 1{,}414</math> och <math>x = -\sqrt{2} \approx -1{,}414</math>.</li>
+
\approx 1{,}414</math> and <math>x = -\sqrt{2} \approx -1{,}414</math>.</li>
-
<li><math>\sqrt{-4}\quad</math> är inte definierad, eftersom det inte finns något reellt tal <math>x</math> som uppfyller <math>x^2=-4</math>.</li>
+
<li><math>\sqrt{-4}\quad</math> is not defined, since there is no real number <math>x</math> that satisfies <math>x^2=-4</math>.</li>
-
<li><math>\sqrt{(-7)^2} = 7 \quad</math> eftersom <math> \sqrt{(-7)^2}
+
<li><math>\sqrt{(-7)^2} = 7 \quad</math> because <math> \sqrt{(-7)^2}
= \sqrt{(-7) \cdot (-7)} = \sqrt{49} = \sqrt{ 7 \cdot 7} = 7</math>.</li>
= \sqrt{(-7) \cdot (-7)} = \sqrt{49} = \sqrt{ 7 \cdot 7} = 7</math>.</li>
</ol>
</ol>
</div>
</div>
-
När man räknar med kvadratrötter kan det vara bra att känna till några räkneregler. Eftersom <math>\sqrt{a} = a^{1/2}</math> kan vi överföra potenslagarna till "rotlagar". Vi har t.ex. att
+
When taking square roots, it is useful to know some methods of calculation. As <math>\sqrt{a} = a^{1/2}</math> we can use the laws of exponents as "laws of roots" For example, we have
{{Fristående formel||<math>\sqrt{9\cdot 4}
{{Fristående formel||<math>\sqrt{9\cdot 4}
= (9\cdot 4)^{1/2}
= (9\cdot 4)^{1/2}
= 9^{1/2}\cdot 4^{1/2}
= 9^{1/2}\cdot 4^{1/2}
= \sqrt{9}\cdot \sqrt{4}\mbox{.}</math>}}
= \sqrt{9}\cdot \sqrt{4}\mbox{.}</math>}}
-
På detta sätt kan vi få fram följande räkneregler för kvadratrötter,
+
In this way we obtain the following rules for quadratic roots, which applies to all real numbers <math> a, b \ge 0:</math>
-
som gäller för alla reella tal <math> a, b \ge 0:</math>
+
<div class="regel">
<div class="regel">
Line 78: Line 77:
\end{align*}</math>}}
\end{align*}</math>}}
</div>
</div>
-
(Vi måste dock vid divisionen ovan som vanligt förutsätta att ''b'' inte är 0.)
+
( We must however, in the above division, assume as always that ''b'' is not 0.)
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
''' Example 2'''
<ol type="a">
<ol type="a">
Line 97: Line 96:
</div>
</div>
-
Observera att räknereglerna ovan förutsätter att <math>a</math> och <math>b \ge 0</math>. Om <math>a</math> och <math>b</math> är negativa (<&nbsp;0) så är inte <math>\sqrt{a}</math> och <math>\sqrt{b}</math> definierade som reella tal. Man skulle t.ex. kunna frestas att skriva
+
Note that the above calculations assume that <math>a</math> and <math>b \ge 0</math>. If <math>a</math> and <math>b</math> are negative (<&nbsp;0) then <math>\sqrt{a}</math> and <math>\sqrt{b}</math> are not defined as real numbers. It is tempting to write , for example,
{{Fristående formel||<math>-1 = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{ (-1) \cdot (-1) } = \sqrt{1} = 1</math>}}
{{Fristående formel||<math>-1 = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{ (-1) \cdot (-1) } = \sqrt{1} = 1</math>}}
-
men ser då att något inte stämmer. Anledningen är att <math> \sqrt{-1} </math> inte är ett reellt tal, vilket alltså gör att räknereglerna ovan inte får användas.
+
but something here cannot be right. The explanation is that <math> \sqrt{-1} </math> is not a real number, which means the laws of roots discussed above may not be used.
-
== Högre ordningars rötter ==
+
== Higher order roots ==
-
Kubikroten ur ett tal <math>a</math> definieras som det tal som multiplicerat med sig självt tre gånger ger <math>a</math>, och betecknas <math>\sqrt[\scriptstyle 3]{a}</math>.
+
The cube root of a number l <math>a</math> is defined as the number that multiplied by itself three times gives <math>a</math>, and is denoted as <math>\sqrt[\scriptstyle 3]{a}</math>.
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Example 3'''
<ol type="a">
<ol type="a">
-
<li><math>\sqrt[\scriptstyle 3]{8} = 2 \quad</math> eftersom <math>2
+
<li><math>\sqrt[\scriptstyle 3]{8} = 2 \quad</math> as <math>2
\cdot 2 \cdot 2=8</math>.</li>
\cdot 2 \cdot 2=8</math>.</li>
<li><math>\sqrt[\scriptstyle 3]{0{,}027} = 0{,}3
<li><math>\sqrt[\scriptstyle 3]{0{,}027} = 0{,}3
-
\quad</math> eftersom <math>0{,}3 \cdot 0{,}3 \cdot 0{,}3
+
\quad</math> since <math>0{,}3 \cdot 0{,}3 \cdot 0{,}3
= 0{,}027</math>.</li>
= 0{,}027</math>.</li>
-
<li><math>\sqrt[\scriptstyle 3]{-8} = -2 \quad</math> eftersom <math>(-2)
+
<li><math>\sqrt[\scriptstyle 3]{-8} = -2 \quad</math> because <math>(-2)
\cdot (-2) \cdot (-2)= -8</math>.
\cdot (-2) \cdot (-2)= -8</math>.
</ol>
</ol>
</div>
</div>
-
Notera att, till skillnad från kvadratrötter, är kubikrötter även definierade för negativa tal.
+
Note that, unlike quadratics roots, cube roots are also defined for negative numbers.
-
Det går sedan att för positiva heltal <math>n</math> definiera ''n'':te roten ur ett tal <math>a</math> som
+
For any positive integers <math>n</math> one can define the the n:th root of a number<math>a</math> as
-
* om <math>n</math> är jämn och <math>a\ge0</math> är <math>\sqrt[\scriptstyle n]{a}</math> det icke-negativa tal som multiplicerat med sig självt <math>n</math> gånger blir <math>a</math>,
+
* if <math>n</math> is even and <math>a\ge0</math> then <math>\sqrt[\scriptstyle n]{a}</math> is the non-negative number that when multiplied by itself <math>n</math> times gives <math>a</math>,
-
* om <math>n</math> är udda så är <math>\sqrt[\scriptstyle n]{a}</math> det tal som multiplicerat med sig självt <math>n</math> gånger blir <math>a</math>.
+
* if <math>n</math> is odd, <math>\sqrt[\scriptstyle n]{a}</math> is the number that when multiplied by itself <math>n</math> times gives <math>a</math>.
-
Roten <math>\sqrt[\scriptstyle n]{a}</math> kan även skrivas som <math>a^{1/n}</math>.
+
The root <math>\sqrt[\scriptstyle n]{a}</math> can also be written as <math>a^{1/n}</math>.
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
''' Example 4'''
<ol type="a">
<ol type="a">
-
<li><math>\sqrt[\scriptstyle 4]{625} = 5\quad</math> eftersom <math>5
+
<li><math>\sqrt[\scriptstyle 4]{625} = 5\quad</math> since <math>5
\cdot 5 \cdot 5 \cdot 5 = 625</math>.</li>
\cdot 5 \cdot 5 \cdot 5 = 625</math>.</li>
-
<li><math>\sqrt[\scriptstyle 5]{-243} = -3\quad</math> eftersom <math>(-3)
+
<li><math>\sqrt[\scriptstyle 5]{-243} = -3\quad</math> because <math>(-3)
\cdot (-3) \cdot (-3) \cdot (-3) \cdot (-3) = -243</math>.</li>
\cdot (-3) \cdot (-3) \cdot (-3) \cdot (-3) = -243</math>.</li>
-
<li><math>\sqrt[\scriptstyle 6]{-17}\quad</math> är inte definierad eftersom <math>6</math> är jämn och <math>-17</math> är ett negativt tal.</li>
+
<li><math>\sqrt[\scriptstyle 6]{-17}\quad</math> is not defined as <math>6</math> is even and <math>-17</math> is a negative number. </li>
</ol>
</ol>
</div>
</div>
-
För <math>n</math>:te rötter gäller samma räkneregler som för kvadratrötter om <math>a, \, b \ge 0</math>. Observera att om <math>n</math> är udda gäller de även för negativa <math>a</math> och <math>b</math>, dvs. för alla reella tal <math>a</math> och <math>b</math>.
+
For <math>n</math>:th roots the same rules apply as for quadratic roots if <math>a, \, b \ge 0</math>. Note that if <math>n</math> is odd these methods apply even for negative <math>a</math> and <math>b</math>, that is, for all real numbers <math>a</math> and <math>b</math>.
<div class="regel">
<div class="regel">
Line 158: Line 157:
-
== Förenkling av rotuttryck ==
+
== Simplification of expressions containing roots ==
-
Ofta kan man genom att använda räknereglerna för rötter förenkla rotuttryck väsentligt. Liksom vid potensräkning handlar det ofta om att bryta ner uttryck i så "små" rötter som möjligt. Exempelvis gör man gärna omskrivningen
+
Often, one can significantly simplify expressions containing roots by using the usual methods for roots . As is also the case when using the laws of exponents, it is desirable to reduce expressions into as"small" roots as possible. For example, it is a good idea to do the following
{{Fristående formel||<math>\sqrt{8}
{{Fristående formel||<math>\sqrt{8}
Line 167: Line 166:
= 2\sqrt{2}</math>}}
= 2\sqrt{2}</math>}}
-
eftersom man då kan förenkla t.ex.
+
because it helps simplification as we see here
{{Fristående formel||<math>\frac{\sqrt{8}}{2}
{{Fristående formel||<math>\frac{\sqrt{8}}{2}
Line 173: Line 172:
= \sqrt{2}\mbox{.}</math>}}
= \sqrt{2}\mbox{.}</math>}}
-
Genom att skriva rotuttryck i termer av "små" rötter kan man också addera rötter av "samma sort", t.ex.
+
By rewriting expressions containing roots in terms of "small" roots one can also sum roots of "the same kind", e.g.
{{Fristående formel||<math>\sqrt{8} + \sqrt{2}
{{Fristående formel||<math>\sqrt{8} + \sqrt{2}
Line 181: Line 180:
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Example 5'''
<ol type="a">
<ol type="a">
Line 235: Line 234:
<li><math>(\sqrt{3} + \sqrt{2}\,)(\sqrt{3} - \sqrt{2}\,)
<li><math>(\sqrt{3} + \sqrt{2}\,)(\sqrt{3} - \sqrt{2}\,)
= (\sqrt{3}\,)^2-(\sqrt{2}\,)^2 = 3-2 = 1</math>
= (\sqrt{3}\,)^2-(\sqrt{2}\,)^2 = 3-2 = 1</math>
-
:där vi använt konjugatregeln <math>(a+b)(a-b) = a^2 - b^2</math> med <math>a=\sqrt{3}</math> och <math>b=\sqrt{2}</math>.</li>
+
where we have used the difference of two squares <math>(a+b)(a-b) = a^2 - b^2</math> with <math>a=\sqrt{3}</math> and <math>b=\sqrt{2}</math>.</li>
</ol>
</ol>
</div>
</div>
-
== Rationella rotuttryck ==
+
== Rational root expressions ==
-
När rötter förekommer i ett rationellt uttryck vill man ofta undvika rötter i nämnaren (eftersom det är svårt vid handräkning att dividera med irrationella tal). Genom att förlänga med <math> \sqrt{2} </math> kan man exempelvis göra omskrivningen
+
When roots appear in a rational expression one often want to avoid roots in the denominator (because it is difficult with hand calculations to divide by irrational numbers). By multiplying the numerator and denominator by <math> \sqrt{2} </math> for example, one obtains
{{Fristående formel||<math>\frac{1}{\sqrt{2}}
{{Fristående formel||<math>\frac{1}{\sqrt{2}}
Line 248: Line 247:
= \frac{\sqrt{2}}{2}</math>}}
= \frac{\sqrt{2}}{2}</math>}}
-
vilket oftast är att föredra.
+
which usually is preferable.
-
I andra fall kan man utnyttja konjugatregeln, <math>(a+b)(a-b) = a^2 - b^2</math>, och förlänga med nämnarens s.k. ''konjugerade uttryck''. På så sätt försvinner rottecknen från nämnaren genom kvadreringen, t.ex.
+
In other cases, you can take advantage of the method of difference of two squares, <math>(a+b)(a-b) = a^2 - b^2</math>, where one multiplies the numerator and denominator by the denominators “conjugate” and the root sign is eliminated from the denominator by squaring, as in the following,
{{Fristående formel||<math>\begin{align*}
{{Fristående formel||<math>\begin{align*}
Line 263: Line 262:
<div class="exempel">
<div class="exempel">
-
'''Exempel 6'''
+
''' Example 6'''
<ol type="a">
<ol type="a">
Line 292: Line 291:
-
[[3.1 Övningar|Övningar]]
+
[[3.1 Övningar|Exercises]]
<div class="inforuta" style="width:580px;">
<div class="inforuta" style="width:580px;">
-
'''Råd för inläsning'''
+
'''Study advice'''
-
'''Grund- och slutprov'''
+
'''Basic and final tests'''
-
Efter att du har läst texten och arbetat med övningarna ska du göra grund- och slutprovet för att bli godkänd på detta avsnitt. Du hittar länken till proven i din student lounge.
+
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
 +
'''Keep in mind that: '''
-
'''Tänk på att:'''
+
Square root of a number is always non-negative (that is positive or zero)!
-
Kvadratroten ur ett tal är alltid icke-negativ (dvs. positiv eller lika med noll)!
+
Rules for roots are actually special case of laws of exponents .
-
Rotlagarna är egentligen specialfall av potenslagarna.
+
For example: <math>\sqrt{x}=x^{1/2}</math>.
-
Exempelvis: <math>\sqrt{x}=x^{1/2}</math>.
 
 +
'''Reviews'''
-
'''Lästips'''
+
For those of you who want to deepen your studies or need more detailed explanations consider the following references
-
För dig som vill fördjupa dig ytterligare eller behöver en längre förklaring
+
[http://en.wikipedia.org/wiki/Root_(mathematics) Learn more about square roots in the English Wikipedia ]
-
[http://en.wikipedia.org/wiki/Root_(mathematics) Läs mer om kvadratrötter i engelska Wikipedia]
+
[http://www.mathacademy.com/pr/prime/articles/irr2/ How do we know that the root of 2 is not a fraction?]
-
 
+
-
[http://www.mathacademy.com/pr/prime/articles/irr2/ Hur vet man att roten ur 2 inte är ett bråktal?]
+
'''Länktips'''
'''Länktips'''
-
[http://mathforum.org/dr.math/faq/faq.sqrt.by.hand.html Hur man finner roten ur ett tal, utan hjälp av miniräknare?]
+
[http://mathforum.org/dr.math/faq/faq.sqrt.by.hand.html How to find the root of a number, without the help of calculators?]
</div>
</div>

Revision as of 11:27, 13 July 2008

       Theory          Exercises      

Content:

  • Quadratic roots and n:th roots
  • Manipulating roots

Learning outcomes:

After this section, you will have learned:

  • How to calculate the square root of some simple integers.
  • That the square root of a negative number has not been defined.
  • That the square root of a number denotes the positive root.
  • How to manipulate roots in the simplification of expressions containing roo
  • To recognise when the methods of manipulating roots are valid.
  • How to simplify expressions containing quadratic roots in the denominator.
  • When the n:th root of a negative number is defined (n odd).

Quadratic roots

right The well-known symbol \displaystyle \sqrt{a}, the square root of \displaystyle a, is used to describe the number that when multiplied by itself gives \displaystyle a. However, one has to be a little more precise in defining this symbol.

The equation \displaystyle x^2 = 4 has two solutions \displaystyle x = 2 and \displaystyle x = -2, since both \displaystyle 2\cdot 2 = 4 and \displaystyle (-2)\cdot(-2) = 4. It would then be logical to suppose that \displaystyle \sqrt{4} can be either \displaystyle -2 or \displaystyle 2, dvs. \displaystyle \sqrt{4}= \pm 2, but \displaystyle \sqrt{4} only denotes the positive number \displaystyle 2.


Square root \displaystyle \sqrt{a} "means the non-negative number that multiplied by itself gives \displaystyle a, i.e. the non-negative solution to the equation \displaystyle x^2 = a.

Square root of \displaystyle a can also be written as \displaystyle a^{1/2}.

It is therefore wrong to state that \displaystyle \sqrt{4}= \pm 2, but correct to state that the equation \displaystyle x^2 = 4 has the solution \displaystyle x = \pm 2.

Example 1

  1. \displaystyle \sqrt{0}=0 \quad because \displaystyle 0^2 = 0 \cdot 0 = 0 and \displaystyle 0 is not negative.
  2. \displaystyle \sqrt{100}=10 \quad since \displaystyle 10^2 = 10 \cdot 10 = 100 and \displaystyle 10 is a positive number.
  3. \displaystyle \sqrt{0{,}25}=0{,}5 \quad since \displaystyle 0{,}5^2 = 0{,}5 \cdot 0{,}5 = 0{,}25 and \displaystyle 0{,}5 is positive.
  4. \displaystyle \sqrt{2} \approx 1{,}4142 \quad since \displaystyle 1{,}4142 \cdot 1{,}4142 \approx 2 and \displaystyle 1{,}4142 is positive.
  5. The equation \displaystyle x^2=2 has the solutions \displaystyle x=\sqrt{2} \approx 1{,}414 and \displaystyle x = -\sqrt{2} \approx -1{,}414.
  6. \displaystyle \sqrt{-4}\quad is not defined, since there is no real number \displaystyle x that satisfies \displaystyle x^2=-4.
  7. \displaystyle \sqrt{(-7)^2} = 7 \quad because \displaystyle \sqrt{(-7)^2} = \sqrt{(-7) \cdot (-7)} = \sqrt{49} = \sqrt{ 7 \cdot 7} = 7.

When taking square roots, it is useful to know some methods of calculation. As \displaystyle \sqrt{a} = a^{1/2} we can use the laws of exponents as "laws of roots" For example, we have

\displaystyle \sqrt{9\cdot 4}
 = (9\cdot 4)^{1/2}
 = 9^{1/2}\cdot 4^{1/2}
 = \sqrt{9}\cdot \sqrt{4}\mbox{.}

In this way we obtain the following rules for quadratic roots, which applies to all real numbers \displaystyle a, b \ge 0:

\displaystyle \begin{align*}
   \sqrt{ab} &= \sqrt{\vphantom{b}a}\cdot \sqrt{b}\\[4pt]
   \sqrt{\frac{a}{b}} &= \frac{\sqrt{a}}{\sqrt{b}}\\[4pt]
   a\sqrt{b} &= \sqrt{a^2b}
 \end{align*}

( We must however, in the above division, assume as always that b is not 0.)

Example 2

  1. \displaystyle \sqrt{64\cdot 81} = \sqrt{64}\cdot \sqrt{81} = 8\cdot 9 = 72
  2. \displaystyle \sqrt{\frac{9}{25}} = \frac{\sqrt{9}}{\sqrt{25}} = \frac{3}{5}
  3. \displaystyle \sqrt{18} \cdot \sqrt{2} = \sqrt{18 \cdot 2} = \sqrt{36} = 6
  4. \displaystyle \frac{\sqrt{75}}{\sqrt{3}} = \sqrt{\frac{75}{3}} = \sqrt{25} = 5
  5. \displaystyle \sqrt{12} = \sqrt{ 4 \cdot 3 } = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}

Note that the above calculations assume that \displaystyle a and \displaystyle b \ge 0. If \displaystyle a and \displaystyle b are negative (< 0) then \displaystyle \sqrt{a} and \displaystyle \sqrt{b} are not defined as real numbers. It is tempting to write , for example,

\displaystyle -1 = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{ (-1) \cdot (-1) } = \sqrt{1} = 1

but something here cannot be right. The explanation is that \displaystyle \sqrt{-1} is not a real number, which means the laws of roots discussed above may not be used.


Higher order roots

The cube root of a number l \displaystyle a is defined as the number that multiplied by itself three times gives \displaystyle a, and is denoted as \displaystyle \sqrt[\scriptstyle 3]{a}.

Example 3

  1. \displaystyle \sqrt[\scriptstyle 3]{8} = 2 \quad as \displaystyle 2 \cdot 2 \cdot 2=8.
  2. \displaystyle \sqrt[\scriptstyle 3]{0{,}027} = 0{,}3 \quad since \displaystyle 0{,}3 \cdot 0{,}3 \cdot 0{,}3 = 0{,}027.
  3. \displaystyle \sqrt[\scriptstyle 3]{-8} = -2 \quad because \displaystyle (-2) \cdot (-2) \cdot (-2)= -8.

Note that, unlike quadratics roots, cube roots are also defined for negative numbers.

For any positive integers \displaystyle n one can define the the n:th root of a number\displaystyle a as

  • if \displaystyle n is even and \displaystyle a\ge0 then \displaystyle \sqrt[\scriptstyle n]{a} is the non-negative number that when multiplied by itself \displaystyle n times gives \displaystyle a,
  • if \displaystyle n is odd, \displaystyle \sqrt[\scriptstyle n]{a} is the number that when multiplied by itself \displaystyle n times gives \displaystyle a.

The root \displaystyle \sqrt[\scriptstyle n]{a} can also be written as \displaystyle a^{1/n}.

Example 4

  1. \displaystyle \sqrt[\scriptstyle 4]{625} = 5\quad since \displaystyle 5 \cdot 5 \cdot 5 \cdot 5 = 625.
  2. \displaystyle \sqrt[\scriptstyle 5]{-243} = -3\quad because \displaystyle (-3) \cdot (-3) \cdot (-3) \cdot (-3) \cdot (-3) = -243.
  3. \displaystyle \sqrt[\scriptstyle 6]{-17}\quad is not defined as \displaystyle 6 is even and \displaystyle -17 is a negative number.

For \displaystyle n:th roots the same rules apply as for quadratic roots if \displaystyle a, \, b \ge 0. Note that if \displaystyle n is odd these methods apply even for negative \displaystyle a and \displaystyle b, that is, for all real numbers \displaystyle a and \displaystyle b.

\displaystyle \begin{align*}
   \sqrt[\scriptstyle n]{ab}
     &= \sqrt[\scriptstyle n]{\vphantom{b}a}\cdot
          \sqrt[\scriptstyle n]{b}\\[4pt]
   \sqrt[\scriptstyle n]{\frac{a}{b}}
     &= \frac{\sqrt[\scriptstyle n]{a}}{\sqrt[\scriptstyle n]{b}}\\[4pt]
   a\,\sqrt[\scriptstyle n]{b}
     &= \sqrt[\scriptstyle n]{a^nb}
 \end{align*}


Simplification of expressions containing roots

Often, one can significantly simplify expressions containing roots by using the usual methods for roots . As is also the case when using the laws of exponents, it is desirable to reduce expressions into as"small" roots as possible. For example, it is a good idea to do the following

\displaystyle \sqrt{8}
 = \sqrt{4\cdot2}
 = \sqrt{4} \cdot \sqrt{2}
 = 2\sqrt{2}

because it helps simplification as we see here

\displaystyle \frac{\sqrt{8}}{2}
 = \frac{2 \sqrt{2}}{2}
 = \sqrt{2}\mbox{.}

By rewriting expressions containing roots in terms of "small" roots one can also sum roots of "the same kind", e.g.

\displaystyle \sqrt{8} + \sqrt{2}
 = 2\sqrt{2} + \sqrt{2}
 = (2+1)\sqrt{2}
 = 3\sqrt{2}\mbox{.}

Example 5

  1. \displaystyle \frac{\sqrt{8}}{\sqrt{18}} = \frac{\sqrt{2 \cdot 4}}{\sqrt{2 \cdot 9}} = \frac{\sqrt{2 \cdot 2 \cdot 2}}{\sqrt{2 \cdot 3 \cdot 3}} = \frac{\sqrt{2 \cdot 2^2}}{\sqrt{2 \cdot 3^2}} = \frac{2\sqrt{2}}{3\sqrt{2}} = \frac{2}{3}
  2. \displaystyle \frac{\sqrt{72}}{6} = \frac{\sqrt{8 \cdot 9}}{ 2 \cdot 3} = \frac{\sqrt{2 \cdot 2 \cdot 2 \cdot 3 \cdot 3}}{ 2 \cdot 3} = \frac{\sqrt{2^2 \cdot 3^2 \cdot 2}}{ 2 \cdot 3} = \frac{2 \cdot 3\sqrt{2}}{2 \cdot 3} = \sqrt{2}
  3. \displaystyle \sqrt{45} + \sqrt{20} = \sqrt{9\cdot5} + \sqrt{4\cdot5} = \sqrt{3^2\cdot5} + \sqrt{2^2\cdot5} = 3\sqrt{5} + 2\sqrt{5}\vphantom{\bigl(}
    \displaystyle \phantom{\sqrt{45} + \sqrt{20}\vphantom{\bigl(}}{} = (3+2)\sqrt{5} = 5\sqrt{5}
  4. \displaystyle \sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(} = \sqrt{5 \cdot 10} + 2\sqrt{3} -\sqrt{2 \cdot 16} + \sqrt{3 \cdot 9}
    \displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = \sqrt{5 \cdot 2 \cdot 5} + 2\sqrt{3} -\sqrt{2 \cdot 4 \cdot 4} + \sqrt{3 \cdot 3 \cdot 3}\vphantom{a^{b^c}}
    \displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = \sqrt{5^2 \cdot 2 } + 2\sqrt{3} -\sqrt{2^2 \cdot 2^2 \cdot 2} + \sqrt{3 \cdot 3^2}\vphantom{a^{\textstyle b^{\textstyle c}}}
    \displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = 5\sqrt{2} +2\sqrt{3} - 2 \cdot 2\sqrt{2} + 3\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}}
    \displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = (5-4)\sqrt{2} + (2+3)\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}}
    \displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = \sqrt{2} + 5\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}}
  5. \displaystyle \frac{ 2\cdot\sqrt[\scriptstyle3]{3} }{ \sqrt[\scriptstyle3]{12} } = \frac{ 2\cdot\sqrt[\scriptstyle3]{3} }{ \sqrt[\scriptstyle3]{3 \cdot 4} } = \frac{ 2\cdot\sqrt[\scriptstyle3]{3} }{ \sqrt[\scriptstyle3]{3} \cdot \sqrt[\scriptstyle3]{4} } = \frac{ 2 }{ \sqrt[\scriptstyle3]{4} } = \frac{ 2 }{ \sqrt[\scriptstyle3]{2 \cdot 2} } = \frac{ 2 }{ \sqrt[\scriptstyle3]{2} \cdot \sqrt[\scriptstyle3]{2} } \cdot \displaystyle \frac{\sqrt[\scriptstyle3]{2}}{ \sqrt[\scriptstyle3]{2}} = \frac{ 2\cdot\sqrt[\scriptstyle3]{2} }{ 2 } = \sqrt[\scriptstyle3]{2}
  6. \displaystyle (\sqrt{3} + \sqrt{2}\,)(\sqrt{3} - \sqrt{2}\,) = (\sqrt{3}\,)^2-(\sqrt{2}\,)^2 = 3-2 = 1 where we have used the difference of two squares \displaystyle (a+b)(a-b) = a^2 - b^2 with \displaystyle a=\sqrt{3} and \displaystyle b=\sqrt{2}.


Rational root expressions

When roots appear in a rational expression one often want to avoid roots in the denominator (because it is difficult with hand calculations to divide by irrational numbers). By multiplying the numerator and denominator by \displaystyle \sqrt{2} for example, one obtains

\displaystyle \frac{1}{\sqrt{2}}
 = \frac{1\cdot\sqrt{2}}{\sqrt{2}\cdot\sqrt{2}}
 = \frac{\sqrt{2}}{2}

which usually is preferable.

In other cases, you can take advantage of the method of difference of two squares, \displaystyle (a+b)(a-b) = a^2 - b^2, where one multiplies the numerator and denominator by the denominators “conjugate” and the root sign is eliminated from the denominator by squaring, as in the following,

\displaystyle \begin{align*}
   \frac{\sqrt{3}}{\sqrt{2}+1}
     &= \frac{\sqrt{3}}{\sqrt{2}+1} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1}
      = \frac{\sqrt{3}\,(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}\\[4pt]
     &= \frac{\sqrt{3}\cdot\sqrt{2} - \sqrt{3}\cdot1}{(\sqrt{2}\,)^2 - 1^2 }
      = \frac{\sqrt{3 \cdot 2} - \sqrt{3}}{ 2 - 1 }
      = \frac{\sqrt{6} - \sqrt{3}}{ 1 }
      = \sqrt{6} - \sqrt{3}\mbox{.}
 \end{align*}

Example 6

  1. \displaystyle \frac{10\sqrt{3}}{\sqrt{5}} = \frac{10\sqrt{3}\cdot\sqrt{5}}{\sqrt{5}\cdot\sqrt{5}} = \frac{10\sqrt{15}}{5} = 2\sqrt{15}
  2. \displaystyle \frac{1+\sqrt{3}}{\sqrt{2}} = \frac{(1+\sqrt{3})\cdot\sqrt{2}}{\sqrt{2}\cdot\sqrt{2}} = \frac{\sqrt{2}+\sqrt{6}}{2}
  3. \displaystyle \frac{3}{\sqrt{2}-2} = \frac{3(\sqrt{2}+2)}{(\sqrt{2}-2)(\sqrt{2}+2)} = \frac{3\sqrt{2}+6}{(\sqrt{2}\,)^2-2^2} = \frac{3\sqrt{2}+6}{2-4} = -\frac{3\sqrt{2}+6}{2}
  4. \displaystyle \frac{\sqrt{2}}{\sqrt{6}+\sqrt{3}} = \frac{\sqrt{2}\,(\sqrt{6}-\sqrt{3}\,)}{(\sqrt{6}+\sqrt{3}\,) (\sqrt{6}-\sqrt{3}\,)} = \frac{\sqrt{2}\,\sqrt{6}-\sqrt{2}\,\sqrt{3}}{(\sqrt{6}\,)^2 -(\sqrt{3}\,)^2}\vphantom{\Biggl(}
    \displaystyle \phantom{\frac{\sqrt{2}}{\sqrt{6}+\sqrt{3}}\vphantom{\Biggl(}}{} = \frac{\sqrt{2}\,\sqrt{2\cdot 3}-\sqrt{2}\,\sqrt{3}}{6-3} = \frac{2\sqrt{3}-\sqrt{2}\,\sqrt{3}}{3} = \frac{(2-\sqrt{2}\,)\sqrt{3}}{3} \vphantom{\displaystyle\frac{a^{\textstyle b^{\textstyle c}}}{b}}


Exercises


Study advice

Basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.

Keep in mind that:

Square root of a number is always non-negative (that is positive or zero)!

Rules for roots are actually special case of laws of exponents .

For example: \displaystyle \sqrt{x}=x^{1/2}.


Reviews

For those of you who want to deepen your studies or need more detailed explanations consider the following references

Learn more about square roots in the English Wikipedia

How do we know that the root of 2 is not a fraction?


Länktips

How to find the root of a number, without the help of calculators?