2.1 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Regerate images and tabs)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.1 Algebraiska uttryck|Teori]]}}
+
{{Ej vald flik|[[2.1 Algebraiska uttryck|Theory]]}}
-
{{Vald flik|[[2.1 Övningar|Övningar]]}}
+
{{Vald flik|[[2.1 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
Line 10: Line 10:
===Övning 2.1:1===
===Övning 2.1:1===
<div class="ovning">
<div class="ovning">
-
Utveckla
+
Expand
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 36: Line 36:
===Övning 2.1:2===
===Övning 2.1:2===
<div class="ovning">
<div class="ovning">
-
Utveckla
+
Expand
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 55: Line 55:
===Övning 2.1:3===
===Övning 2.1:3===
<div class="ovning">
<div class="ovning">
-
Faktorisera s&aring; l&aring;ngt som m&ouml;jligt
+
Factorize and simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 75: Line 75:
===Övning 2.1:4===
===Övning 2.1:4===
<div class="ovning">
<div class="ovning">
-
Bestäm koefficienterna framför <math>\,x\,</math> och <math>\,x^2\</math> när följande uttryck utvecklas
+
Determine the coefficients in front of <math>\,x\,</math> and <math>\,x^2\</math> when the following expressiona are expanded out.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 91: Line 91:
===Övning 2.1:5===
===Övning 2.1:5===
<div class="ovning">
<div class="ovning">
-
Förenkla så långt som möjligt
+
Simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 107: Line 107:
===Övning 2.1:6===
===Övning 2.1:6===
<div class="ovning">
<div class="ovning">
-
Förenkla så långt som möjligt
+
Simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 123: Line 123:
===Övning 2.1:7===
===Övning 2.1:7===
<div class="ovning">
<div class="ovning">
-
Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck
+
Simplify the following fractions by writing them as an expression having a common fraction sign
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 136: Line 136:
===Övning 2.1:8===
===Övning 2.1:8===
<div class="ovning">
<div class="ovning">
-
Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck
+
Simplify the following fractions by writing them as an expression having a common fraction sign
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)

Revision as of 11:44, 3 August 2008

       Theory          Exercises      


Övning 2.1:1

Expand

a) \displaystyle 3x(x-1) b) \displaystyle (1+x-x^2)xy c) \displaystyle -x^2(4-y^2)
d) \displaystyle x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) e) \displaystyle (x-7)^2 f) \displaystyle (5+4y)^2
g) \displaystyle (y^2-3x^3)^2 h) \displaystyle (5x^3+3x^5)^2


Övning 2.1:2

Expand

a) \displaystyle (x-4)(x-5)-3x(2x-3) b) \displaystyle (1-5x)(1+15x)-3(2-5x)(2+5x)
c) \displaystyle (3x+4)^2-(3x-2)(3x-8) d) \displaystyle (3x^2+2)(3x^2-2)(9x^4+4)
e) \displaystyle (a+b)^2+(a-b)^2

Övning 2.1:3

Factorize and simplify as much as possible

a) \displaystyle x^2-36 b) \displaystyle 5x^2-20 c) \displaystyle x^2+6x+9
d) \displaystyle x^2-10x+25 e) \displaystyle 18x-2x^3 f) \displaystyle 16x^2+8x+1

Övning 2.1:4

Determine the coefficients in front of \displaystyle \,x\, and \displaystyle \,x^2\ when the following expressiona are expanded out.

a) \displaystyle (x+2)(3x^2-x+5)
b) \displaystyle (1+x+x^2+x^3)(2-x+x^2+x^4)
c) \displaystyle (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4)

Övning 2.1:5

Simplify as much as possible

a) \displaystyle \displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x} b) \displaystyle \displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4}
c) \displaystyle \displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)} d) \displaystyle \displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}

Övning 2.1:6

Simplify as much as possible

a) \displaystyle \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \displaystyle \left(\displaystyle\frac{y}{2x-y}-1\right) b) \displaystyle \displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2
c) \displaystyle \displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b} d) \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}

Övning 2.1:7

Simplify the following fractions by writing them as an expression having a common fraction sign

a) \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} b) \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} c) \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}

Övning 2.1:8

Simplify the following fractions by writing them as an expression having a common fraction sign

a) \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } b) \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} c) \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}