2.2 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Line 90: Line 90:
===Exercise 2.2:6===
===Exercise 2.2:6===
<div class="ovning">
<div class="ovning">
-
Finn sk&auml;rningspunkten mellan f&ouml;ljande linjer
+
Find the points of intersection between the pairs of lines in the following
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 109: Line 109:
===Exercise 2.2:7===
===Exercise 2.2:7===
<div class="ovning">
<div class="ovning">
-
Skissera grafen till f&ouml;ljande funktioner
+
Sketch the graph of the functions
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 122: Line 122:
===Exercise 2.2:8===
===Exercise 2.2:8===
<div class="ovning">
<div class="ovning">
-
Rita in i ett ''xy''-plan alla punkter vars koordinater <math>\,(x,y)\,</math> uppfyller
+
In the ''xy''-plane, draw in all the points whose coordinates <math>\,(x,y)\,</math> satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 135: Line 135:
===Exercise 2.2:9===
===Exercise 2.2:9===
<div class="ovning">
<div class="ovning">
-
Ber&auml;kna arean av den triangel som
+
Calculate the area of the triangle which
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | har h&ouml;rn i punkterna <math>\,(1,4)\,</math>, <math>\,(3,3)\,</math> och <math>\,(1,0)\,</math>.
+
|width="100%" | has corners at the points <math>\,(1,4)\,</math>, <math>\,(3,3)\,</math> and <math>\,(1,0)\,</math>.
|-
|-
|b)
|b)
-
|| begr&auml;nsas av linjerna <math>\ x=2y\,</math>, <math>\ y=4\ </math> och <math>\ y=10-2x\,</math>.
+
|| is bordered by the lines <math>\ x=2y\,</math>, <math>\ y=4\ </math> and <math>\ y=10-2x\,</math>.
|-
|-
|c)
|c)
-
|| beskrivs av olikheterna <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> och <math>\ 2y-x \leq 2\,</math>.
+
|| is described by the inequalities <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> and <math>\ 2y-x \leq 2\,</math>.
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 2.2:9|Lösning a|Lösning 2.2:9a|Lösning b|Lösning 2.2:9b|Lösning c|Lösning 2.2:9c}}
</div>{{#NAVCONTENT:Svar|Svar 2.2:9|Lösning a|Lösning 2.2:9a|Lösning b|Lösning 2.2:9b|Lösning c|Lösning 2.2:9c}}

Revision as of 13:15, 3 August 2008

       Theory          Exercises      

Exercise 2.2:1

Solve the equations

a) \displaystyle x-2=-1 b) \displaystyle 2x+1=13
c) \displaystyle \displaystyle\frac{1}{3}x-1=x d) \displaystyle 5x+7=2x-6

Exercise 2.2:2

Solve the equations

a) \displaystyle \displaystyle\frac{5x}{6}-\displaystyle\frac{x+2}{9}=\displaystyle\frac{1}{2} b) \displaystyle \displaystyle\frac{8x+3}{7}-\displaystyle\frac{5x-7}{4}=2
c) \displaystyle (x+3)^2-(x-5)^2=6x+4 d) \displaystyle (x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2

Exercise 2.2:3

Solve the equations

a) \displaystyle \displaystyle\frac{x+3}{x-3}-\displaystyle\frac{x+5}{x-2}=0
b) \displaystyle \displaystyle\frac{4x}{4x-7}-\displaystyle\frac{1}{2x-3}=1
c) \displaystyle \left(\displaystyle\frac{1}{x-1}-\frac{1}{x+1}\right)\left(x^2+\frac{1}{2}\right)=\displaystyle\frac{6x-1}{3x-3}
d) \displaystyle \left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0

Exercise 2.2:4

a) Write the equation for the line \displaystyle \,y=2x+3\, in the form \displaystyle \,ax+by=c\,
b) Write the equation for the line \displaystyle 3x+4y-5=0 in the form \displaystyle \,y=kx+m\,

Exercise 2.2:5

a) Determine the equation for the straight line that goes between the points \displaystyle \,(2,3)\, and\displaystyle \,(3,0)\,
b) Determine the equation for the straight line that has gradient \displaystyle \,-3\, and goes through the point \displaystyle \,(1,-2)\,
c) Determine the equation for the straight line that goes through the point \displaystyle \,(-1,2)\, and is parallel to the line \displaystyle \,y=3x+1\,
d) Determine the equation for the straight line that goes through the point \displaystyle \,(2,4)\, and is perpendicular to the line \displaystyle \,y=2x+5\,
e) Determine the slope, \displaystyle \,k\, for the straight line that cuts the x-axis at the point \displaystyle \,(5,0)\, and y-axis at the point \displaystyle \,(0,-8)\,

Exercise 2.2:6

Find the points of intersection between the pairs of lines in the following

a) \displaystyle y=3x+5\ och x-axeln b) \displaystyle y=-x+5\ och y-axeln
c) \displaystyle 4x+5y+6=0\ och y-axeln d) \displaystyle x+y+1=0\ och \displaystyle \ x=12
e) \displaystyle 2x+y-1=0\ och \displaystyle \ y-2x-2=0

Exercise 2.2:7

Sketch the graph of the functions

a) \displaystyle f(x)=3x-2 b) \displaystyle f(x)=2-x c) \displaystyle f(x)=2

Exercise 2.2:8

In the xy-plane, draw in all the points whose coordinates \displaystyle \,(x,y)\, satisfy

a) \displaystyle y \geq x b) \displaystyle y < 3x -4 c) \displaystyle 2x+3y \leq 6

Exercise 2.2:9

Calculate the area of the triangle which

a) has corners at the points \displaystyle \,(1,4)\,, \displaystyle \,(3,3)\, and \displaystyle \,(1,0)\,.
b) is bordered by the lines \displaystyle \ x=2y\,, \displaystyle \ y=4\ and \displaystyle \ y=10-2x\,.
c) is described by the inequalities \displaystyle \ x+y \geq -2\,, \displaystyle \ 2x-y \leq 2\ and \displaystyle \ 2y-x \leq 2\,.