2.2 Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
Line 90: | Line 90: | ||
===Exercise 2.2:6=== | ===Exercise 2.2:6=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | Find the points of intersection between the pairs of lines in the following | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 109: | Line 109: | ||
===Exercise 2.2:7=== | ===Exercise 2.2:7=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | Sketch the graph of the functions | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 122: | Line 122: | ||
===Exercise 2.2:8=== | ===Exercise 2.2:8=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | In the ''xy''-plane, draw in all the points whose coordinates <math>\,(x,y)\,</math> satisfy | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 135: | Line 135: | ||
===Exercise 2.2:9=== | ===Exercise 2.2:9=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | + | Calculate the area of the triangle which | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="100%" | | + | |width="100%" | has corners at the points <math>\,(1,4)\,</math>, <math>\,(3,3)\,</math> and <math>\,(1,0)\,</math>. |
|- | |- | ||
|b) | |b) | ||
- | || | + | || is bordered by the lines <math>\ x=2y\,</math>, <math>\ y=4\ </math> and <math>\ y=10-2x\,</math>. |
|- | |- | ||
|c) | |c) | ||
- | || | + | || is described by the inequalities <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> and <math>\ 2y-x \leq 2\,</math>. |
|} | |} | ||
</div>{{#NAVCONTENT:Svar|Svar 2.2:9|Lösning a|Lösning 2.2:9a|Lösning b|Lösning 2.2:9b|Lösning c|Lösning 2.2:9c}} | </div>{{#NAVCONTENT:Svar|Svar 2.2:9|Lösning a|Lösning 2.2:9a|Lösning b|Lösning 2.2:9b|Lösning c|Lösning 2.2:9c}} |
Revision as of 13:15, 3 August 2008
Theory | Exercises |
Exercise 2.2:1
Solve the equations
a) | \displaystyle x-2=-1 | b) | \displaystyle 2x+1=13 |
c) | \displaystyle \displaystyle\frac{1}{3}x-1=x | d) | \displaystyle 5x+7=2x-6 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Exercise 2.2:2
Solve the equations
a) | \displaystyle \displaystyle\frac{5x}{6}-\displaystyle\frac{x+2}{9}=\displaystyle\frac{1}{2} | b) | \displaystyle \displaystyle\frac{8x+3}{7}-\displaystyle\frac{5x-7}{4}=2 |
c) | \displaystyle (x+3)^2-(x-5)^2=6x+4 | d) | \displaystyle (x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Exercise 2.2:3
Solve the equations
a) | \displaystyle \displaystyle\frac{x+3}{x-3}-\displaystyle\frac{x+5}{x-2}=0 |
b) | \displaystyle \displaystyle\frac{4x}{4x-7}-\displaystyle\frac{1}{2x-3}=1 |
c) | \displaystyle \left(\displaystyle\frac{1}{x-1}-\frac{1}{x+1}\right)\left(x^2+\frac{1}{2}\right)=\displaystyle\frac{6x-1}{3x-3} |
d) | \displaystyle \left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Exercise 2.2:4
a) | Write the equation for the line \displaystyle \,y=2x+3\, in the form \displaystyle \,ax+by=c\, |
b) | Write the equation for the line \displaystyle 3x+4y-5=0 in the form \displaystyle \,y=kx+m\, |
Exercise 2.2:5
a) | Determine the equation for the straight line that goes between the points \displaystyle \,(2,3)\, and\displaystyle \,(3,0)\, |
b) | Determine the equation for the straight line that has gradient \displaystyle \,-3\, and goes through the point \displaystyle \,(1,-2)\, |
c) | Determine the equation for the straight line that goes through the point \displaystyle \,(-1,2)\, and is parallel to the line \displaystyle \,y=3x+1\, |
d) | Determine the equation for the straight line that goes through the point \displaystyle \,(2,4)\, and is perpendicular to the line \displaystyle \,y=2x+5\, |
e) | Determine the slope, \displaystyle \,k\, for the straight line that cuts the x-axis at the point \displaystyle \,(5,0)\, and y-axis at the point \displaystyle \,(0,-8)\, |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Exercise 2.2:6
Find the points of intersection between the pairs of lines in the following
a) | \displaystyle y=3x+5\ och x-axeln | b) | \displaystyle y=-x+5\ och y-axeln |
c) | \displaystyle 4x+5y+6=0\ och y-axeln | d) | \displaystyle x+y+1=0\ och \displaystyle \ x=12 |
e) | \displaystyle 2x+y-1=0\ och \displaystyle \ y-2x-2=0 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Exercise 2.2:7
Sketch the graph of the functions
a) | \displaystyle f(x)=3x-2 | b) | \displaystyle f(x)=2-x | c) | \displaystyle f(x)=2 |
Exercise 2.2:8
In the xy-plane, draw in all the points whose coordinates \displaystyle \,(x,y)\, satisfy
a) | \displaystyle y \geq x | b) | \displaystyle y < 3x -4 | c) | \displaystyle 2x+3y \leq 6 |
Exercise 2.2:9
Calculate the area of the triangle which
a) | has corners at the points \displaystyle \,(1,4)\,, \displaystyle \,(3,3)\, and \displaystyle \,(1,0)\,. |
b) | is bordered by the lines \displaystyle \ x=2y\,, \displaystyle \ y=4\ and \displaystyle \ y=10-2x\,. |
c) | is described by the inequalities \displaystyle \ x+y \geq -2\,, \displaystyle \ 2x-y \leq 2\ and \displaystyle \ 2y-x \leq 2\,. |