1.3 Powers
From Förberedande kurs i matematik 1
m |
|||
Line 51: | Line 51: | ||
= 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001</math></li> | = 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001</math></li> | ||
<li><math>(-2)^4 | <li><math>(-2)^4 | ||
- | = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, | + | = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, but <math> -2^4 |
= -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16</math></li> | = -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16</math></li> | ||
- | <li><math> 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18</math>, | + | <li><math> 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18</math>, but <math> |
(2\cdot3)^2 = 6^2 = 36</math></li> | (2\cdot3)^2 = 6^2 = 36</math></li> | ||
</ol> | </ol> | ||
Line 79: | Line 79: | ||
<div class="regel"> | <div class="regel"> | ||
- | {{Fristående formel||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{ | + | {{Fristående formel||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.}</math>}} |
</div> | </div> | ||
Line 194: | Line 194: | ||
{{Fristående formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{osv.}}</math>}} | {{Fristående formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{osv.}}</math>}} | ||
- | The rule is that <math>(-1)^n</math> is equal to<math>-1</math> | + | The rule is that <math>(-1)^n </math> is equal to<math>-1</math> |
if <math>n</math> is odd and equal to <math>+1</math> if <math>n</math> is even . | if <math>n</math> is odd and equal to <math>+1</math> if <math>n</math> is even . | ||
Line 272: | Line 272: | ||
</div> | </div> | ||
- | We must assume that | + | We must assume that <math>a\ge 0</math>, since no real number multiplied by itself can give a negative number. |
We also see that, for example, | We also see that, for example, | ||
Line 283: | Line 283: | ||
</div> | </div> | ||
- | By combining this definition with one of the previous laws of exponents <math>((a^m)^n=a^{m\cdot n})</math> gives that for all<math>a\ge0</math> it holds that | + | By combining this definition with one of the previous laws of exponents <math>((a^m)^n=a^{m\cdot n})</math> gives that for all <math>a\ge0</math> it holds that |
<div class="regel"> | <div class="regel"> | ||
Line 298: | Line 298: | ||
<ol type="a"> | <ol type="a"> | ||
<li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27} | <li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27} | ||
- | = 3\quad</math> | + | = 3\quad</math> as <math>3 \cdot 3 \cdot 3 =27</math></li> |
<li><math>1000^{-1/3} = \frac{1}{1000^{1/3}} | <li><math>1000^{-1/3} = \frac{1}{1000^{1/3}} | ||
= \frac{1}{(10^3)^{1/3}} | = \frac{1}{(10^3)^{1/3}} | ||
Line 352: | Line 352: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math> 25^{1/3} </math> | + | <li><math> 25^{1/3} </math> and <math> 5^{3/4} </math>. |
<br> | <br> | ||
<br> | <br> | ||
- | The base 25 can be written about in terms of the second base <math>5</math> by putting<math>25= 5\cdot 5= 5^2</math>. Therefore | + | The base 25 can be written about in terms of the second base <math>5</math> by putting <math>25= 5\cdot 5= 5^2</math>. Therefore |
{{Fristående formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}} | {{Fristående formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}} | ||
Line 365: | Line 365: | ||
since <math>\frac{3}{4} > \frac{2}{3}</math> and the base <math>5</math> is larger than <math>1</math>.</li> | since <math>\frac{3}{4} > \frac{2}{3}</math> and the base <math>5</math> is larger than <math>1</math>.</li> | ||
- | <li><math>(\sqrt{8}\,)^5 </math> | + | <li><math>(\sqrt{8}\,)^5 </math> and <math>128</math>. |
<br> | <br> | ||
<br> | <br> | ||
Line 386: | Line 386: | ||
because <math>\frac{15}{2} > \frac{14}{2}</math> and the base <math>2</math> is greater than <math>1</math>.</li> | because <math>\frac{15}{2} > \frac{14}{2}</math> and the base <math>2</math> is greater than <math>1</math>.</li> | ||
- | <li><math> (8^2)^{1/5} </math> | + | <li><math> (8^2)^{1/5} </math> and <math> (\sqrt{27}\,)^{4/5}</math>. |
<br> | <br> | ||
<br> | <br> | ||
Line 404: | Line 404: | ||
{{Fristående formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}} | {{Fristående formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}} | ||
- | because <math> 3>2</math> and exponent<math>\frac{6}{5}</math> is positive. | + | because <math> 3>2</math> and exponent <math>\frac{6}{5}</math> is positive. |
- | <li><math> 3^{1/3} </math> | + | <li><math> 3^{1/3} </math> and <math> 2^{1/2}</math> |
<br> | <br> | ||
<br> | <br> | ||
Line 424: | Line 424: | ||
{{Fristående formel||<math> 3^{1/3} > 2^{1/2} </math>}} | {{Fristående formel||<math> 3^{1/3} > 2^{1/2} </math>}} | ||
- | because <math> 9>8</math> and the exponent<math>1/6</math> is positive.</li> | + | because <math> 9>8</math> and the exponent <math>1/6</math> is positive.</li> |
</ol> | </ol> | ||
</div> | </div> |
Revision as of 17:15, 6 August 2008
Theory | Exercises |
Content:
- Positive integer exponent
- Negative integer exponent
- Rational exponents
- Laws of exponents
Learning outcomes:
After this section, you will have learned to:
- Recognise the concepts of base and exponent.
- Calculate integer power expressions
- Use the laws of exponents to simplify expressions containing powers.
- Know when the laws of exponents are applicable (positive basis).
- Determine which of two powers is the larger based on a comparison of the base / exponent.
Integer exponents
We use the multiplication symbol as a short-hand for repeated addition of the same number, for example,
![]() |
In a similar way we use exponentials as a short-hand for repeated multiplication of the same number:
![]() ![]() ![]() ![]() |
The 4 is called the base of the power, and the 5 is its exponent.
Example 1
53=5 5
5=125
105=10 10
10
10
10=100000
0 13=0
1
0
1
0
1=0
001
(−2)4=(−2) , but(−2)
(−2)
(−2)=16
−24=−(24)=−(2 2
2
2)=−16
2 , but32=2
3
3=18
(2 3)2=62=36
Exempel 2
32
3=32
32
32=3323=827
(2 3)4=(2
3)
(2
3)
(2
3)
(2
3)
=2 2
2
2
3
3
3
3=24
34=1296
The last example can be generalised to two useful rules when calculating powers:
![]() ![]() |
Laws of exponents
There are a few more rules coming from the definition of power which are useful when doing calculations.You can see for example that
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
which generally can be expressed as
![]() |
There is also a useful simplification rule for division of powers which have the same base.
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The general rule is
For the case when the base itself is a power that is the power of a power one has another useful rule. We see that
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
and
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Generally, this can be written
![]() |
Example 3
29 214=29+14=223
5 53=51
53=51+3=54
32 33
34=32+3+4=39
105 1000=105
103=105+3=108
Exempel 4
3983100=3100−98=32 7710=71710=710−1=79
If a fraction has the same expression for the exponent both in the numerator and the denominator we can simplify in two ways:
![]() ![]() ![]() ![]() |
The only way for the rules of powers to agree is to make the
following but natural definition that for all non zero a one has that
We can also run into examples where the exponent in the denominator is greater than that in the numerator. We can have, for example,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
We see that it is necessary to assume that the negative exponent implies that
The general definition of negative exponents is to interpret negative exponents
of all non zero numbers a as follows
Example 5
7129371293=71293−1293=70=1 37 3−9
34=37+(−9)+4=32
0 001=11000=1103=10−3
0 008=81000=1125=153=5−3
32
−1=1
32
1=1
23=23
132
−3=(3−2)−3=3(−2)
(−3)=36
0 015=(10−2)5=10−2
5=10−10
If the base of a power is
![]() ![]() ![]() ![]() ![]() |
The rule is that
Example 6
(−1)56=1 as56 is an even number1(−1)11=1−1=−1 because 11 is an odd number2130(−2)127=2130(−1 2)127=2130(−1)127
2127=2130−1
2127
=−2127−130=−2−3=−123=−81
Changing the base
A point to observe is that when simplifying expressions try, if possible, to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base and, therefore, it is a good idea to learn to recognize the powers of these numbers, such as
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
But even
![]() ![]() ![]() |
![]() ![]() |
![]() ![]() |
and so on.
Example 7
- Write
83 as a power with base 24−2
16
83 4−2
16=(23)3
(22)−2
24=23
3
22
(−2)
24
=29 2−4
24=29−4+4=29
- Write
812272 as a power with base 3.(1
9)−2
812272 (1
9)−2=(34)2(33)2
(1
32)−2=(34)2(33)2
(3−2)−2
=34 233
2
3(−2)
(−2)=3836
34=3836+4=38310=310−8=32
- Write
25+2481 in as simple a form as possible.322
(2
3)2
25+2481 322
(2
3)2=24+1+2434
(25)2
3222=24
21+2434
25
2
3222=24
(21+1)34
210
3222
=24 33234
210
22=32
24
334
210
22=34−2−1
210+2−4=31
28=3
28
Rational exponents
What happens if a number is raised to a rational exponent? Do the the definitions and the rules we have used above to do calculations still hold?
For instance, since
![]() ![]() ![]() ![]() ![]() |
so 2
2
2
2
2=2
Generally, we define
![]() ![]() |
We must assume that 0
We also see that, for example,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
which means that 3=
35,
![]() ![]() |
By combining this definition with one of the previous laws of exponents n)
0
![]() ![]() ![]() |
or
![]() ![]() ![]() |
Example 8
271 as3=
327=3
3 3
3=27
1000−1 3=110001
3=1(103)1
3=1103
31=1101=110
1 8=181
2=1(23)1
2=123
2=2−3
2
116−1 3=1(24)−1
3=12−4
3=2−(−4
3)=24
3
Comparison of powers
If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents.
If the base of a power greater than
Example 9
35 as the base6
33
4
3 is greater than1 and the first exponent5 is greater than the second exponent6
3 .4
3−3 as the base is greater than4
3−5
6
1 and the exponents satisfy−3 .4
−5
6
0 as the base35
0
34
0 is between3
0 and1 and5 .4
If a power has a positive exponent, it will get larger the larger the base becomes. The opposite applies if the exponent is negative: that is the power decreases as the base gets larger.
Example 10
53 as the base2
43
2
5 is larger than the base4 and both powers have the same positive exponent3 .2
2−5 as the bases satisfy3
3−5
3
2 and the powers have a negative exponent3
−5 .3
Sometimes powers must be rewritten in order to determine the relative sizes. For example to compare
after which one can see that \displaystyle 36^3 > 125^2.
Example 11
Determine which of the following pairs of numbers is the greater
- \displaystyle 25^{1/3} and \displaystyle 5^{3/4} .
The base 25 can be written about in terms of the second base \displaystyle 5 by putting \displaystyle 25= 5\cdot 5= 5^2. Therefore\displaystyle 25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3} and then we see that
\displaystyle 5^{3/4} > 25^{1/3} - \displaystyle (\sqrt{8}\,)^5 and \displaystyle 128.
Both \displaystyle 8 and \displaystyle 128 can be written as powers of \displaystyle 2\displaystyle \eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}} This means that
\displaystyle \begin{align*} (\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2} = 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\ 128 &= 2^7 = 2^{14/2} \end{align*}
and thus
\displaystyle (\sqrt{8}\,)^5 > 128 - \displaystyle (8^2)^{1/5} and \displaystyle (\sqrt{27}\,)^{4/5}.
Since \displaystyle 8=2^3 and \displaystyle 27=3^3 a first step can be to simplify and write the numbers as powers of \displaystyle 2 and \displaystyle 3 respectively,\displaystyle \begin{align*} (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}} = 2^{6/5}\mbox{,}\\ (\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5} = 27^{ \frac{1}{2} \cdot \frac{4}{5}} = 27^{2/5} = (3^3)^{2/5} = 3^{3 \cdot \frac{2}{5}} = 3^{6/5}\mbox{.}
\end{align*}
Now we see that
\displaystyle (\sqrt{27}\,)^{4/5} > (8^2)^{1/5} because \displaystyle 3>2 and exponent \displaystyle \frac{6}{5} is positive.
- \displaystyle 3^{1/3} and \displaystyle 2^{1/2}
We rewrite the exponents so they have a common denominator\displaystyle \frac{1}{3} = \frac{2}{6} \quad and \displaystyle \quad \frac{1}{2} = \frac{3}{6}. Then we have that
\displaystyle \begin{align*} 3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\ 2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6}
\end{align*}
and we see that
\displaystyle 3^{1/3} > 2^{1/2}
Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
The number raised to the power 0, is always 1, if the number (the base) is not 0.
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about powers in the English Wikipedi
What is the greatest prime number? Read more at The Prime Page
Länktips