2.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Translated links into English)
Line 20: Line 20:
|width="25%" | <math>x^2+5x+3</math>
|width="25%" | <math>x^2+5x+3</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:1|Lösning a|Lösning 2.3:1a|Lösning b|Lösning 2.3:1b|Lösning c|Lösning 2.3:1c|Lösning d|Lösning 2.3:1d}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:1|Solution a|Lösning 2.3:1a|Solution b|Lösning 2.3:1b|Solution c|Lösning 2.3:1c|Solution d|Lösning 2.3:1d}}
===Exercise 2.3:2===
===Exercise 2.3:2===
Line 40: Line 40:
|width="33%" | <math>3x^2-10x+8=0</math>
|width="33%" | <math>3x^2-10x+8=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:2|Lösning a|Lösning 2.3:2a|Lösning b|Lösning 2.3:2b|Lösning c|Lösning 2.3:2c|Lösning d|Lösning 2.3:2d|Lösning e|Lösning 2.3:2e|Lösning f|Lösning 2.3:2f}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:2|Solution a|Lösning 2.3:2a|Solution b|Lösning 2.3:2b|Solution c|Lösning 2.3:2c|Solution d|Lösning 2.3:2d|Solution e|Lösning 2.3:2e|Solution f|Lösning 2.3:2f}}
===Exercise 2.3:3===
===Exercise 2.3:3===
Line 61: Line 61:
|width="50%" | <math>x(x^2-2x)+x(2-x)=0</math>
|width="50%" | <math>x(x^2-2x)+x(2-x)=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:3|Lösning a|Lösning 2.3:3a|Lösning b|Lösning 2.3:3b|Lösning c|Lösning 2.3:3c|Lösning d|Lösning 2.3:3d|Lösning e|Lösning 2.3:3e|Lösning f|Lösning 2.3:3f}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:3|Solution a|Lösning 2.3:3a|Solution b|Lösning 2.3:3b|Solution c|Lösning 2.3:3c|Solution d|Lösning 2.3:3d|Solution e|Lösning 2.3:3e|Solution f|Lösning 2.3:3f}}
===Exercise 2.3:4===
===Exercise 2.3:4===
Line 76: Line 76:
|width="100" | <math>3\ </math> and <math>\ \sqrt{3}</math>
|width="100" | <math>3\ </math> and <math>\ \sqrt{3}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:4|Lösning a|Lösning 2.3:4a|Lösning b|Lösning 2.3:4b|Lösning c|Lösning 2.3:4c}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:4|Solution a|Lösning 2.3:4a|Solution b|Lösning 2.3:4b|Solution c|Lösning 2.3:4c}}
===Exercise 2.3:5===
===Exercise 2.3:5===
Line 85: Line 85:
|-
|-
|b)
|b)
-
|width="100" | Determine a value of <math>\,x\,</math> which makes the expression <math>\,4x^2-28x+48\,</math> be negative.
+
|width="100" | Determine a value of <math>\,x\,</math> which makes the expression <math>\,4x^2-28x+48\,</math> negative.
|-
|-
|c)
|c)
|width="100" | The equation <math>\,x^2+4x+b=0\,</math> has one root at <math>\,x=1\,</math>. Determine the value of the constant <math>\,b\,</math>.
|width="100" | The equation <math>\,x^2+4x+b=0\,</math> has one root at <math>\,x=1\,</math>. Determine the value of the constant <math>\,b\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:5|Lösning a|Lösning 2.3:5a|Lösning b|Lösning 2.3:5b|Lösning c|Lösning 2.3:5c}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:5|Solution a|Lösning 2.3:5a|Solution b|Lösning 2.3:5b|Solution c|Lösning 2.3:5c}}
===Exercise 2.3:6===
===Exercise 2.3:6===
Line 103: Line 103:
|width="33%" | <math>x^2-5x+7</math>
|width="33%" | <math>x^2-5x+7</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:6|Lösning a|Lösning 2.3:6a|Lösning b|Lösning 2.3:6b|Lösning c|Lösning 2.3:6c}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:6|Solution a|Lösning 2.3:6a|Solution b|Lösning 2.3:6b|Solution c|Lösning 2.3:6c}}
Line 117: Line 117:
|width="33%" | <math>x^2+x+1</math>
|width="33%" | <math>x^2+x+1</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:7|Lösning a|Lösning 2.3:7a|Lösning b|Lösning 2.3:7b|Lösning c|Lösning 2.3:7c}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:7|Solution a|Lösning 2.3:7a|Solution b|Lösning 2.3:7b|Solution c|Lösning 2.3:7c}}
===Exercise 2.3:8===
===Exercise 2.3:8===
Line 130: Line 130:
|width="33%" | <math>f(x)=x^2-6x+11</math>
|width="33%" | <math>f(x)=x^2-6x+11</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:8|Lösning a|Lösning 2.3:8a|Lösning b|Lösning 2.3:8b|Lösning c|Lösning 2.3:8c}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:8|Solution a|Lösning 2.3:8a|Solution b|Lösning 2.3:8b|Solution c|Lösning 2.3:8c}}
===Exercise 2.3:9===
===Exercise 2.3:9===
Line 143: Line 143:
|width="33%" | <math>y=3x^2-12x+9</math>
|width="33%" | <math>y=3x^2-12x+9</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:9|Lösning a|Lösning 2.3:9a|Lösning b|Lösning 2.3:9b|Lösning c|Lösning 2.3:9c}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:9|Solution a|Lösning 2.3:9a|Solution b|Lösning 2.3:9b|Solution c|Lösning 2.3:9c}}
===Exercise 2.3:10===
===Exercise 2.3:10===
Line 150: Line 150:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="50%" | <math>y \geq x^2\ </math> och <math>\ y \leq 1 </math>
+
|width="50%" | <math>y \geq x^2\ </math> and <math>\ y \leq 1 </math>
|b)
|b)
-
|width="50%" | <math>y \leq 1-x^2\ </math> och <math>\ x \geq 2y-3 </math>
+
|width="50%" | <math>y \leq 1-x^2\ </math> and <math>\ x \geq 2y-3 </math>
|-
|-
|c)
|c)
Line 160: Line 160:
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.3:10|Lösning a|Lösning 2.3:10a|Lösning b|Lösning 2.3:10b|Lösning c|Lösning 2.3:10c|Lösning d|Lösning 2.3:10d}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.3:10|Solution a|Lösning 2.3:10a|Solution b|Lösning 2.3:10b|Solution c|Lösning 2.3:10c|Solution d|Lösning 2.3:10d}}

Revision as of 14:54, 18 August 2008

       Theory          Exercises      

Exercise 2.3:1

Complete the square of the expressions

a) \displaystyle x^2-2x b) \displaystyle x^2+2x-1 c) \displaystyle 5+2x-x^2 d) \displaystyle x^2+5x+3

Exercise 2.3:2

Solve the following second order equations by completing the square

a) \displaystyle x^2-4x+3=0 b) \displaystyle y^2+2y-15=0 c) \displaystyle y^2+3y+4=0
d) \displaystyle 4x^2-28x+13=0 e) \displaystyle 5x^2+2x-3=0 f) \displaystyle 3x^2-10x+8=0

Exercise 2.3:3

Solve the following equations directly

a) \displaystyle x(x+3)=0 b) \displaystyle (x-3)(x+5)=0
c) \displaystyle 5(3x-2)(x+8)=0 d) \displaystyle x(x+3)-x(2x-9)=0
e) \displaystyle (x+3)(x-1)-(x+3)(2x-9)=0 f) \displaystyle x(x^2-2x)+x(2-x)=0

Exercise 2.3:4

Determine a second-degree equation which has roots

a) \displaystyle -1\ and \displaystyle \ 2
b) \displaystyle 1+\sqrt{3}\ and \displaystyle \ 1-\sqrt{3}
c) \displaystyle 3\ and \displaystyle \ \sqrt{3}

Exercise 2.3:5

a) Determine a second-degree equation which only has \displaystyle \,-7\, as a root.
b) Determine a value of \displaystyle \,x\, which makes the expression \displaystyle \,4x^2-28x+48\, negative.
c) The equation \displaystyle \,x^2+4x+b=0\, has one root at \displaystyle \,x=1\,. Determine the value of the constant \displaystyle \,b\,.

Exercise 2.3:6

Determine the smallest value that the following polynomial can take

a) \displaystyle x^2-2x+1 b) \displaystyle x^2-4x+2 c) \displaystyle x^2-5x+7


Exercise 2.3:7

Determine the largest value that the following polynomials can take.

a) \displaystyle 1-x^2 b) \displaystyle -x^2+3x-4 c) \displaystyle x^2+x+1

Exercise 2.3:8

Sketch the graph of the following functions

a) \displaystyle f(x)=x^2+1 b) \displaystyle f(x)=(x-1)^2+2 c) \displaystyle f(x)=x^2-6x+11

Exercise 2.3:9

Find all the points where the x-axis and the following curves intersect.

a) \displaystyle y=x^2-1 b) \displaystyle y=x^2-5x+6 c) \displaystyle y=3x^2-12x+9

Exercise 2.3:10

In the xy-plane, draw in all the points whose coordinates \displaystyle \,(x,y)\, satisfy

a) \displaystyle y \geq x^2\ and \displaystyle \ y \leq 1 b) \displaystyle y \leq 1-x^2\ and \displaystyle \ x \geq 2y-3
c) \displaystyle 1 \geq x \geq y^2 d) \displaystyle x^2 \leq y \leq x