Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

4.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (13:52, 10 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
(25 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[4.3 Trigonometriska samband|Teori]]}}
+
{{Not selected tab|[[4.3 Trigonometric relations|Theory]]}}
-
{{Mall:Vald flik|[[4.3 Övningar|Övningar]]}}
+
{{Selected tab|[[4.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 4.3:1===
+
===Exercise 4.3:1===
<div class="ovning">
<div class="ovning">
-
Bestäm de vinklar <math>\,v\,</math> mellan <math>\,\displaystyle \frac{\pi}{2}\,</math> och <math>\,2\pi\,</math> som uppfyller
+
Determine the angles <math>\,v\,</math> between <math>\,\displaystyle \frac{\pi}{2}\,</math> and <math>\,2\pi\,</math> which satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 18: Line 18:
|width="33%" | <math>\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}</math>
|width="33%" | <math>\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:1|Lösning a |Lösning 4.3:1a|Lösning b |Lösning 4.3:1b|Lösning c |Lösning 4.3:1c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:1|Solution a |Solution 4.3:1a|Solution b |Solution 4.3:1b|Solution c |Solution 4.3:1c}}
-
===Övning 4.3:2===
+
===Exercise 4.3:2===
<div class="ovning">
<div class="ovning">
-
Bestäm de vinklar <math>\,v\,</math> mellan 0 och <math>\,\pi\,$ som uppfyller</math> som uppfyller
+
Determine the angles <math>\,v\,</math> between 0 and <math>\,\pi\,</math> which satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 29: Line 29:
|width="50%" | <math>\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}</math>
|width="50%" | <math>\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:2|Lösning a |Lösning 4.3:2a|Lösning b |Lösning 4.3:2b}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:2|Solution a |Solution 4.3:2a|Solution b |Solution 4.3:2b}}
 +
 
 +
===Exercise 4.3:3===
 +
<div class="ovning">
 +
Suppose that <math>\,-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}\,</math> and that <math>\,\sin{v} = a\,</math>. With the help of <math>\,a</math> express
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%" | <math>\sin{(-v)}</math>
 +
|b)
 +
|width="50%" | <math>\sin{(\pi-v)}</math>
 +
|-
 +
|c)
 +
|width="50%" | <math>\cos{v}</math>
 +
|d)
 +
|width="50%" | <math>\sin{\left(\displaystyle \frac{\pi}{2}-v\right)}</math>
 +
|-
 +
|e)
 +
|width="50%" | <math>\cos{\left( \displaystyle \frac{\pi}{2} + v\right)}</math>
 +
|f)
 +
|width="50%" | <math>\sin{\left( \displaystyle \frac{\pi}{3} + v \right)}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 4.3:3|Solution a |Solution 4.3:3a|Solution b |Solution 4.3:3b|Solution c |Solution 4.3:3c|Solution d |Solution 4.3:3d|Solution e |Solution 4.3:3e|Solution f |Solution 4.3:3f}}
 +
 
 +
===Exercise 4.3:4===
 +
<div class="ovning">
 +
Suppose that <math>\,0 \leq v \leq \pi\,</math> and that <math>\,\cos{v}=b\,</math>. With the help of <math>\,b</math> express
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%" | <math>\sin^2{v}</math>
 +
|b)
 +
|width="50%" | <math>\sin{v}</math>
 +
|-
 +
|c)
 +
|width="50%" | <math>\sin{2v}</math>
 +
|d)
 +
|width="50%" | <math>\cos{2v}</math>
 +
|-
 +
|e)
 +
|width="50%" | <math>\sin{\left( v+\displaystyle \frac{\pi}{4} \right)}</math>
 +
|f)
 +
|width="50%" | <math>\cos{\left( v-\displaystyle \frac{\pi}{3} \right)}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 4.3:4|Solution a |Solution 4.3:4a|Solution b |Solution 4.3:4b|Solution c |Solution 4.3:4c|Solution d |Solution 4.3:4d|Solution e |Solution 4.3:4e|Solution f |Solution 4.3:4f}}
 +
 
 +
===Exercise 4.3:5===
 +
<div class="ovning">
 +
Determine <math>\,\cos{v}\,</math> and <math>\,\tan{v}\,</math>, where <math>\,v\,</math> is an acute angle in a triangle such that <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math>.
 +
</div>{{#NAVCONTENT:Answer|Answer 4.3:5|Solution |Solution 4.3:5}}
 +
 
 +
===Exercise 4.3:6===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | Determine <math>\ \sin{v}\ </math> and <math>\ \tan{v}\ </math> if <math>\ \cos{v}=\displaystyle \frac{3}{4}\ </math> and <math>\ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,</math>.
 +
|-
 +
|b)
 +
|width="100%" | Determine <math>\ \cos{v}\ </math> and <math>\ \tan{v}\ </math> if <math>\ \sin{v}=\displaystyle \frac{3}{10}\ </math> and <math>\,v\,</math> lies in the second quadrant.
 +
|-
 +
|c)
 +
|width="100%" | Determine <math>\ \sin{v}\ </math> and <math>\ \cos{v}\ </math> if <math>\ \tan{v}=3\ </math> and <math>\ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,</math>.
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 4.3:6|Solution a |Solution 4.3:6a|Solution b |Solution 4.3:6b|Solution c |Solution 4.3:6c}}
 +
 
 +
===Exercise 4.3:7===
 +
<div class="ovning">
 +
Determine <math>\ \sin{(x+y)}\ </math> if
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | <math>\sin{x}=\displaystyle \frac{2}{3}\,</math>,<math>\ \sin{y}=\displaystyle \frac{1}{3}\ </math> and <math>\,x\,</math>, <math> \,y\,</math> are angles in the first quadrant.
 +
|-
 +
|b)
 +
|width="100%" | <math>\cos{x}=\displaystyle \frac{2}{5}\,</math>, <math>\ \cos{y}=\displaystyle \frac{3}{5}\ </math> and <math>\,x\,</math>, <math>\,y\,</math> are angles in the first quadrant.
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 4.3:7|Solution a |Solution 4.3:7a|Solution b |Solution 4.3:7b}}
 +
 
 +
===Exercise 4.3:8===
 +
<div class="ovning">
 +
Show the following trigonometric relations
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | <math>\tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}</math>
 +
|-
 +
|b)
 +
|width="100%" | <math>\displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}</math>
 +
|-
 +
|c)
 +
|width="100%" | <math>\tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}</math>
 +
|-
 +
|d)
 +
|width="100%" | <math>\displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v</math>
 +
|}
 +
</div>{{#NAVCONTENT:Solution a |Solution 4.3:8a|Solution b |Solution 4.3:8b|Solution c |Solution 4.3:8c|Solution d |Solution 4.3:8d}}
 +
 
 +
===Exercise 4.3:9===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|
 +
|width="100%" | Show Feynman's equality
 +
|-
 +
|
 +
|width="100%" |<center> <math>\cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}</math> </center>
 +
|-
 +
|
 +
|width="100%" |(Hint: use the formula for double angles on <math>\,\sin 160^\circ\,</math>.)
 +
|}
 +
</div>{{#NAVCONTENT:Solution |Solution 4.3:9}}

Current revision

       Theory          Exercises      

Exercise 4.3:1

Determine the angles v between 2 and 2 which satisfy

a) cosv=cos5 b) sinv=sin7 c) tanv=tan72

Exercise 4.3:2

Determine the angles v between 0 and which satisfy

a) cosv=cos23 b) cosv=cos57

Exercise 4.3:3

Suppose that 2v2 and that sinv=a. With the help of a express

a) sin(v) b) sin(v)
c) cosv d) sin2v 
e) cos2+v  f) sin3+v 

Exercise 4.3:4

Suppose that 0v and that cosv=b. With the help of b express

a) sin2v b) sinv
c) sin2v d) cos2v
e) sinv+4  f) cosv3 

Exercise 4.3:5

Determine cosv and tanv, where v is an acute angle in a triangle such that sinv=75.

Exercise 4.3:6

a) Determine  sinv  and  tanv  if  cosv=43  and  23v2.
b) Determine  cosv  and  tanv  if  sinv=310  and v lies in the second quadrant.
c) Determine  sinv  and  cosv  if  tanv=3  and  v23.

Exercise 4.3:7

Determine  sin(x+y)  if

a) sinx=32, siny=31  and x, y are angles in the first quadrant.
b) cosx=52,  cosy=53  and x, y are angles in the first quadrant.

Exercise 4.3:8

Show the following trigonometric relations

a) tan2v=sin2v1sin2v
b) 1cosvtanv=cosv1+sinv
c) tan2u=sinu1+cosu
d) cos(u+v)cosucosv=1tanutanv

Exercise 4.3:9

Show Feynman's equality
cos20cos40cos80=81.
(Hint: use the formula for double angles on sin160.)