Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

4.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (13:52, 10 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
(20 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[4.3 Trigonometriska samband|Teori]]}}
+
{{Not selected tab|[[4.3 Trigonometric relations|Theory]]}}
-
{{Mall:Vald flik|[[4.3 Övningar|Övningar]]}}
+
{{Selected tab|[[4.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 4.3:1===
+
===Exercise 4.3:1===
<div class="ovning">
<div class="ovning">
-
Bestäm de vinklar <math>\,v\,</math> mellan <math>\,\displaystyle \frac{\pi}{2}\,</math> och <math>\,2\pi\,</math> som uppfyller
+
Determine the angles <math>\,v\,</math> between <math>\,\displaystyle \frac{\pi}{2}\,</math> and <math>\,2\pi\,</math> which satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 18: Line 18:
|width="33%" | <math>\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}</math>
|width="33%" | <math>\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:1|Lösning a |Lösning 4.3:1a|Lösning b |Lösning 4.3:1b|Lösning c |Lösning 4.3:1c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:1|Solution a |Solution 4.3:1a|Solution b |Solution 4.3:1b|Solution c |Solution 4.3:1c}}
-
===Övning 4.3:2===
+
===Exercise 4.3:2===
<div class="ovning">
<div class="ovning">
-
Bestäm de vinklar <math>\,v\,</math> mellan 0 och <math>\,\pi\,</math> som uppfyller
+
Determine the angles <math>\,v\,</math> between 0 and <math>\,\pi\,</math> which satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 29: Line 29:
|width="50%" | <math>\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}</math>
|width="50%" | <math>\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:2|Lösning a |Lösning 4.3:2a|Lösning b |Lösning 4.3:2b}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:2|Solution a |Solution 4.3:2a|Solution b |Solution 4.3:2b}}
-
===Övning 4.3:3===
+
===Exercise 4.3:3===
<div class="ovning">
<div class="ovning">
-
Antag att <math>\,-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}\,</math> och att <math>\,\sin{v} = a\,</math>. Uttryck med hjälp av <math>\,a</math>
+
Suppose that <math>\,-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}\,</math> and that <math>\,\sin{v} = a\,</math>. With the help of <math>\,a</math> express
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 50: Line 50:
|width="50%" | <math>\sin{\left( \displaystyle \frac{\pi}{3} + v \right)}</math>
|width="50%" | <math>\sin{\left( \displaystyle \frac{\pi}{3} + v \right)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:3|Lösning a |Lösning 4.3:3a|Lösning b |Lösning 4.3:3b|Lösning c |Lösning 4.3:3c|Lösning d |Lösning 4.3:3d|Lösning e |Lösning 4.3:3e|Lösning f |Lösning 4.3:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:3|Solution a |Solution 4.3:3a|Solution b |Solution 4.3:3b|Solution c |Solution 4.3:3c|Solution d |Solution 4.3:3d|Solution e |Solution 4.3:3e|Solution f |Solution 4.3:3f}}
-
===Övning 4.3:4===
+
===Exercise 4.3:4===
<div class="ovning">
<div class="ovning">
-
Antag att <math>\,0 \leq v \leq \pi\,</math> och att <math>\,\cos{v}=b\,</math>. Uttryck med hjälp av <math>\,b</math>
+
Suppose that <math>\,0 \leq v \leq \pi\,</math> and that <math>\,\cos{v}=b\,</math>. With the help of <math>\,b</math> express
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 71: Line 71:
|width="50%" | <math>\cos{\left( v-\displaystyle \frac{\pi}{3} \right)}</math>
|width="50%" | <math>\cos{\left( v-\displaystyle \frac{\pi}{3} \right)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:4|Lösning a |Lösning 4.3:4a|Lösning b |Lösning 4.3:4b|Lösning c |Lösning 4.3:4c|Lösning d |Lösning 4.3:4d|Lösning e |Lösning 4.3:4e|Lösning f |Lösning 4.3:4f}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:4|Solution a |Solution 4.3:4a|Solution b |Solution 4.3:4b|Solution c |Solution 4.3:4c|Solution d |Solution 4.3:4d|Solution e |Solution 4.3:4e|Solution f |Solution 4.3:4f}}
-
===Övning 4.3:5===
+
===Exercise 4.3:5===
<div class="ovning">
<div class="ovning">
-
För en spetsig vinkel <math>\,v\,</math> i en triangel gäller att <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math>. Bestäm <math>\,\cos{v}\,</math> och <math>\,\tan{v}\,</math>.
+
Determine <math>\,\cos{v}\,</math> and <math>\,\tan{v}\,</math>, where <math>\,v\,</math> is an acute angle in a triangle such that <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math>.
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:5|Lösning |Lösning 4.3:5}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:5|Solution |Solution 4.3:5}}
-
===Övning 4.3:6===
+
===Exercise 4.3:6===
<div class="ovning">
<div class="ovning">
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | Bestäm <math>\ \sin{v}\ </math> och <math>\ \tan{v}\ </math> om <math>\ \cos{v}=\displaystyle \frac{3}{4}\ </math> och <math>\ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,</math>.
+
|width="100%" | Determine <math>\ \sin{v}\ </math> and <math>\ \tan{v}\ </math> if <math>\ \cos{v}=\displaystyle \frac{3}{4}\ </math> and <math>\ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,</math>.
|-
|-
|b)
|b)
-
|width="100%" | Bestäm <math>\ \cos{v}\ </math> och <math>\ \tan{v}\ </math> om <math>\ \sin{v}=\displaystyle \frac{3}{10}\ </math> och <math>\,v\,</math> ligger i den andra kvadranten.
+
|width="100%" | Determine <math>\ \cos{v}\ </math> and <math>\ \tan{v}\ </math> if <math>\ \sin{v}=\displaystyle \frac{3}{10}\ </math> and <math>\,v\,</math> lies in the second quadrant.
|-
|-
|c)
|c)
-
|width="100%" | Bestäm <math>\ \sin{v}\ </math> och <math>\ \cos{v}\ </math> om <math>\ \tan{v}=3\ </math> och <math>\ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,</math>.
+
|width="100%" | Determine <math>\ \sin{v}\ </math> and <math>\ \cos{v}\ </math> if <math>\ \tan{v}=3\ </math> and <math>\ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:6|Lösning a |Lösning 4.3:6a|Lösning b |Lösning 4.3:6b|Lösning c |Lösning 4.3:6c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:6|Solution a |Solution 4.3:6a|Solution b |Solution 4.3:6b|Solution c |Solution 4.3:6c}}
-
===Övning 4.3:7===
+
===Exercise 4.3:7===
<div class="ovning">
<div class="ovning">
-
Bestäm <math>\ \sin{(x+y)}\ </math> om
+
Determine <math>\ \sin{(x+y)}\ </math> if
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | <math>\sin{x}=\displaystyle \frac{2}{3}\,</math>,<math>\ \sin{y}=\displaystyle \frac{1}{3}\ </math> och <math>\,x\,$, $\,y\,</math> är vinklar i första kvadranten..
+
|width="100%" | <math>\sin{x}=\displaystyle \frac{2}{3}\,</math>,<math>\ \sin{y}=\displaystyle \frac{1}{3}\ </math> and <math>\,x\,</math>, <math> \,y\,</math> are angles in the first quadrant.
|-
|-
|b)
|b)
-
|width="100%" | <math>\cos{x}=\displaystyle \frac{2}{5}\,</math>, <math>\ \cos{y}=\displaystyle \frac{3}{5}\ </math> och <math>\,x\,</math>, <math>\,y\,</math> är vinklar i första kvadranten.
+
|width="100%" | <math>\cos{x}=\displaystyle \frac{2}{5}\,</math>, <math>\ \cos{y}=\displaystyle \frac{3}{5}\ </math> and <math>\,x\,</math>, <math>\,y\,</math> are angles in the first quadrant.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 4.3:7|Lösning a |Lösning 4.3:7a|Lösning b |Lösning 4.3:7b}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:7|Solution a |Solution 4.3:7a|Solution b |Solution 4.3:7b}}
 +
 
 +
===Exercise 4.3:8===
 +
<div class="ovning">
 +
Show the following trigonometric relations
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | <math>\tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}</math>
 +
|-
 +
|b)
 +
|width="100%" | <math>\displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}</math>
 +
|-
 +
|c)
 +
|width="100%" | <math>\tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}</math>
 +
|-
 +
|d)
 +
|width="100%" | <math>\displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v</math>
 +
|}
 +
</div>{{#NAVCONTENT:Solution a |Solution 4.3:8a|Solution b |Solution 4.3:8b|Solution c |Solution 4.3:8c|Solution d |Solution 4.3:8d}}
 +
 
 +
===Exercise 4.3:9===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|
 +
|width="100%" | Show Feynman's equality
 +
|-
 +
|
 +
|width="100%" |<center> <math>\cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}</math> </center>
 +
|-
 +
|
 +
|width="100%" |(Hint: use the formula for double angles on <math>\,\sin 160^\circ\,</math>.)
 +
|}
 +
</div>{{#NAVCONTENT:Solution |Solution 4.3:9}}

Current revision

       Theory          Exercises      

Exercise 4.3:1

Determine the angles v between 2 and 2 which satisfy

a) cosv=cos5 b) sinv=sin7 c) tanv=tan72

Exercise 4.3:2

Determine the angles v between 0 and which satisfy

a) cosv=cos23 b) cosv=cos57

Exercise 4.3:3

Suppose that 2v2 and that sinv=a. With the help of a express

a) sin(v) b) sin(v)
c) cosv d) sin2v 
e) cos2+v  f) sin3+v 

Exercise 4.3:4

Suppose that 0v and that cosv=b. With the help of b express

a) sin2v b) sinv
c) sin2v d) cos2v
e) sinv+4  f) cosv3 

Exercise 4.3:5

Determine cosv and tanv, where v is an acute angle in a triangle such that sinv=75.

Exercise 4.3:6

a) Determine  sinv  and  tanv  if  cosv=43  and  23v2.
b) Determine  cosv  and  tanv  if  sinv=310  and v lies in the second quadrant.
c) Determine  sinv  and  cosv  if  tanv=3  and  v23.

Exercise 4.3:7

Determine  sin(x+y)  if

a) sinx=32, siny=31  and x, y are angles in the first quadrant.
b) cosx=52,  cosy=53  and x, y are angles in the first quadrant.

Exercise 4.3:8

Show the following trigonometric relations

a) tan2v=sin2v1sin2v
b) 1cosvtanv=cosv1+sinv
c) tan2u=sinu1+cosu
d) cos(u+v)cosucosv=1tanutanv

Exercise 4.3:9

Show Feynman's equality
cos20cos40cos80=81.
(Hint: use the formula for double angles on sin160.)