Processing Math: 81%
4.3 Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
m (4.3 Övningar moved to 4.3 Exercises: Robot: moved page) |
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab)) |
||
(3 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[4.3 Trigonometric relations|Theory]]}} |
- | {{ | + | {{Selected tab|[[4.3 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} |
Current revision
Theory | Exercises |
Exercise 4.3:1
Determine the angles 2
a) | ![]() | b) | ![]() | c) | ![]() |
Answer | Solution a | Solution b | Solution c
Exercise 4.3:2
Determine the angles
a) | ![]() | b) | ![]() |
Exercise 4.3:3
Suppose that 2
v
2
a) | | b) | ![]() |
c) | | d) | ![]() ![]() ![]() |
e) | ![]() ![]() ![]() | f) | ![]() ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 4.3:4
Suppose that v
a) | | b) | |
c) | | d) | |
e) | ![]() ![]() ![]() | f) | ![]() ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 4.3:5
Determine
Exercise 4.3:6
a) | Determine ![]() ![]() ![]() ![]() |
b) | Determine |
c) | Determine ![]() ![]() ![]() ![]() |
Answer | Solution a | Solution b | Solution c
Exercise 4.3:7
Determine
a) | |
b) | \displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ and \displaystyle \,x\,, \displaystyle \,y\, are angles in the first quadrant. |
Exercise 4.3:8
Show the following trigonometric relations
a) | \displaystyle \tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v} |
b) | \displaystyle \displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v} |
c) | \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u} |
d) | \displaystyle \displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v |
Exercise 4.3:9
Show Feynman's equality | |
(Hint: use the formula for double angles on \displaystyle \,\sin 160^\circ\,.) |