Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

4.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-{{Ej vald flik +{{Not selected tab))
Current revision (13:52, 10 September 2008) (edit) (undo)
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab))
 
Line 3: Line 3:
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
{{Not selected tab|[[4.3 Trigonometric relations|Theory]]}}
{{Not selected tab|[[4.3 Trigonometric relations|Theory]]}}
-
{{Vald flik|[[4.3 Exercises|Exercises]]}}
+
{{Selected tab|[[4.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}

Current revision

       Theory          Exercises      

Exercise 4.3:1

Determine the angles v between 2 and 2 which satisfy

a) cosv=cos5 b) sinv=sin7 c) tanv=tan72

Exercise 4.3:2

Determine the angles v between 0 and which satisfy

a) cosv=cos23 b) cosv=cos57

Exercise 4.3:3

Suppose that 2v2 and that sinv=a. With the help of a express

a) sin(v) b) sin(v)
c) cosv d) sin2v 
e) cos2+v  f) sin3+v 

Exercise 4.3:4

Suppose that 0v and that cosv=b. With the help of b express

a) sin2v b) sinv
c) sin2v d) cos2v
e) sinv+4  f) cosv3 

Exercise 4.3:5

Determine cosv and tanv, where v is an acute angle in a triangle such that sinv=75.

Exercise 4.3:6

a) Determine  sinv  and  tanv  if  cosv=43  and  23v2.
b) Determine  cosv  and  tanv  if  sinv=310  and v lies in the second quadrant.
c) Determine  sinv  and  cosv  if  tanv=3  and  v23.

Exercise 4.3:7

Determine  sin(x+y)  if

a) sinx=32, siny=31  and x, y are angles in the first quadrant.
b) cosx=52,  cosy=53  and x, y are angles in the first quadrant.

Exercise 4.3:8

Show the following trigonometric relations

a) tan2v=sin2v1sin2v
b) 1cosvtanv=cosv1+sinv
c) tan2u=sinu1+cosu
d) cos(u+v)cosucosv=1tanutanv

Exercise 4.3:9

Show Feynman's equality
cos20cos40cos80=81.
(Hint: use the formula for double angles on sin160.)