Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 2.3:1c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.3:1c moved to Solution 2.3:1c: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
As always when completing the square, we focus on the quadratic and linear terms
-
<center> [[Image:2_3_1c.gif]] </center>
+
<math>2x-x^{2}</math>
-
{{NAVCONTENT_STOP}}
+
, which we also can write as
 +
<math>-\left( x^{2}-2x \right)</math>
 +
. If we neglect the minus sign, we can complete square of the expression
 +
<math>2x-x^{2}</math>
 +
by using the formula
 +
 
 +
 
 +
<math>x^{2}-ax=\left( x-\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math>
 +
 
 +
 
 +
and we obtain
 +
 
 +
 
 +
<math>x^{2}-2x=\left( x-\frac{2}{2} \right)^{2}-\left( \frac{2}{2} \right)^{2}=\left( x-1 \right)^{2}-1</math>
 +
 
 +
 
 +
This means that
 +
 
 +
 
 +
<math>\begin{align}
 +
& 5+2x-x^{2}=5-\left( x^{2}-2x \right)=5-\left( \left( x-1 \right)^{2}-1 \right) \\
 +
& \\
 +
& =5-\left( x-1 \right)^{2}+1=6-\left( x-1 \right)^{2} \\
 +
& \\
 +
\end{align}</math>
 +
 
 +
 
 +
A quick check shows that we have completed the square correctly.:
 +
 
 +
 
 +
<math>\begin{align}
 +
& 6-\left( x-1 \right)^{2}=6-\left( x^{2}-2x+1 \right)=6-x^{2}+2x-1 \\
 +
& \\
 +
& =5+2x-x^{2} \\
 +
& \\
 +
\end{align}</math>

Revision as of 11:19, 12 September 2008

As always when completing the square, we focus on the quadratic and linear terms 2xx2 , which we also can write as x22x  . If we neglect the minus sign, we can complete square of the expression 2xx2 by using the formula


x2ax=x2a22a2 


and we obtain


x22x=x222222=x121 


This means that


5+2xx2=5x22x=5x121=5x12+1=6x12


A quick check shows that we have completed the square correctly.:


6x12=6x22x+1=6x2+2x1=5+2xx2