Solution 3.4:1b
From Förberedande kurs i matematik 1
m  (Lösning 3.4:1b moved to Solution 3.4:1b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {  | + | In the equation, both sides are positive because the factors   | 
| - | <  | + | <math>e^{x}</math>  | 
| - | {{  | + | and   | 
| - | {  | + | <math>3^{-x}</math>  | 
| - | <  | + | are positive regardless of the value of   | 
| - | {{  | + | <math>x</math>  | 
| + | (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both numbers,  | ||
| + | |||
| + | |||
| + | <math>\ln \left( 13e^{x} \right)=\ln \left( 2\centerdot 3^{-x} \right)</math>  | ||
| + | |||
| + | |||
| + | Using the log law, we can divide up the products into several logarithmic terms,  | ||
| + | |||
| + | |||
| + | <math>\ln 13+\ln e^{x}=\ln 2+\ln 3^{-x}</math>  | ||
| + | |||
| + | |||
| + | and using the law   | ||
| + | <math>\ln a^{b}=b\centerdot \ln a</math>, we can get rid of   | ||
| + | <math>x</math>  | ||
| + | from the exponents:  | ||
| + | |||
| + | |||
| + | <math>\ln 13+x\ln e=\ln 2+\left( -x \right)\ln 3</math>  | ||
| + | |||
| + | |||
| + | Collecting together   | ||
| + | <math>x</math>  | ||
| + | on one side and the other terms on the other,  | ||
| + | |||
| + | |||
| + | <math>x\ln e+x\ln 3=\ln 2-\ln 13</math>  | ||
| + | |||
| + | |||
| + | Take out   | ||
| + | <math>x</math>  | ||
| + | on the left-hand side and use    | ||
| + | <math>\ln e=1</math>  | ||
| + | :  | ||
| + | |||
| + | |||
| + | <math>x\left( 1+\ln 3 \right)=\ln 2-\ln 13</math>  | ||
| + | |||
| + | |||
| + | Then, solve for   | ||
| + | <math>x</math>  | ||
| + | :  | ||
| + | |||
| + | |||
| + | <math>x=\frac{\ln 2-\ln 13}{1+\ln 3}</math>  | ||
| + | |||
| + | |||
| + | NOTE: Because   | ||
| + | <math>\ln 2<\ln 13</math>, we can write the answer as  | ||
| + | |||
| + | |||
| + | <math>x=-\frac{\ln 13-\ln 2}{1+\ln 3}</math>  | ||
| + | |||
| + | |||
| + | in order to indicate that    | ||
| + | <math>x</math>  | ||
| + | is negative.  | ||
Revision as of 12:55, 12 September 2008
In the equation, both sides are positive because the factors 
13ex
=ln
2
3−x
 
Using the log law, we can divide up the products into several logarithmic terms,
and using the law 
lna
−x
ln3 
Collecting together 
Take out 
1+ln3
=ln2−ln13 
Then, solve for 
NOTE: Because 
ln13
in order to indicate that  
