4.2 Exercises
From Förberedande kurs i matematik 1
m (Robot: Automated text replacement (-{{:4.2 - Figur - Rätvinklig triangel med vinkeln v och sidor 5 och 7}} +{{:4.2 - Figure - A right-angled triangle with angle v and sides 5 and 7}})) |
m (Robot: Automated text replacement (-{{:4.2 - Figur - Rätvinklig triangel med vinkeln v och sidor 3 och 5}} +{{:4.2 - Figure - A right-angled triangle with angle v and sides 3 and 5}})) |
||
(14 intermediate revisions not shown.) | |||
Line 13: | Line 13: | ||
|a) | |a) | ||
- | |width="50%" | {{:4.2 - | + | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angle 27° and sides x and 13}} |
|b) | |b) | ||
|width="50%" | | |width="50%" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A right-angled triangle with angle 32° and sides x and 25}} |
|- | |- | ||
|c) | |c) | ||
- | |width="50%" | {{:4.2 - | + | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angle 40° and sides 14 and x}} |
|d) | |d) | ||
- | |width="50%" | {{:4.2 - | + | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angle 20° and sides 16 and x}} |
|- | |- | ||
|e) | |e) | ||
- | |width="50%" | {{:4.2 - | + | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angle 35° and sides 11 and x}} |
|f) | |f) | ||
|width="50%" | | |width="50%" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A right-angled triangle with angle 50° and sides x and 19}} |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 4.2:1|Solution a |Solution 4.2:1a|Solution b |Solution 4.2:1b|Solution c |Solution 4.2:1c|Solution d |Solution 4.2:1d|Solution e |Solution 4.2:1e|Solution f |Solution 4.2:1f}} | </div>{{#NAVCONTENT:Answer|Answer 4.2:1|Solution a |Solution 4.2:1a|Solution b |Solution 4.2:1b|Solution c |Solution 4.2:1c|Solution d |Solution 4.2:1d|Solution e |Solution 4.2:1e|Solution f |Solution 4.2:1f}} | ||
Line 37: | Line 37: | ||
|a) | |a) | ||
- | |width="50%" | {{:4.2 - | + | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angle v and sides 2 and 5}} |
|b) | |b) | ||
- | |width="50%" | {{:4.2 - | + | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angle v and sides 70 and 110}} |
|- | |- | ||
|c) | |c) | ||
|width="50%" | {{:4.2 - Figure - A right-angled triangle with angle v and sides 5 and 7}} | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angle v and sides 5 and 7}} | ||
|d) | |d) | ||
- | |width="50%" | {{:4.2 - | + | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angle v and sides 3 and 5}} |
|- | |- | ||
|e) | |e) | ||
- | |width="50%" | {{:4.2 - | + | |width="50%" | {{:4.2 - Figure - A right-angled triangle with angles v and 60° and side 5}} |
|f) | |f) | ||
- | |width="50%" | {{:4.2 - | + | |width="50%" | {{:4.2 - Figure - An isosceles triangle with top angle v and sides 2, 3 and 3}} |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 4.2:2|Solution a |Solution 4.2:2a|Solution b |Solution 4.2:2b|Solution c |Solution 4.2:2c|Solution d |Solution 4.2:2d|Solution e |Solution 4.2:2e|Solution f |Solution 4.2:2f}} | </div>{{#NAVCONTENT:Answer|Answer 4.2:2|Solution a |Solution 4.2:2a|Solution b |Solution 4.2:2b|Solution c |Solution 4.2:2c|Solution d |Solution 4.2:2d|Solution e |Solution 4.2:2e|Solution f |Solution 4.2:2f}} | ||
Line 113: | Line 113: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| | | | ||
- | |width="100%" | <center> {{:4.2 - | + | |width="100%" | <center> {{:4.2 - Figure - Two triangles with angles 45° and 60°, respectively, and height difference x}} </center> |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 4.2:6|Solution |Solution 4.2:6}} | </div>{{#NAVCONTENT:Answer|Answer 4.2:6|Solution |Solution 4.2:6}} | ||
Line 122: | Line 122: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| | | | ||
- | |width="100%" | <center> {{:4.2 - | + | |width="100%" | <center> {{:4.2 - Figure - A river}} </center> |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 4.2:7|Solution |Solution 4.2:7}} | </div>{{#NAVCONTENT:Answer|Answer 4.2:7|Solution |Solution 4.2:7}} | ||
Line 132: | Line 132: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| | | | ||
- | |width="100%" | <center> {{:4.2 - | + | |width="100%" | <center> {{:4.2 - Figure - Hanging rod}} </center> |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 4.2:8|Solution |Solution 4.2:8}} | </div>{{#NAVCONTENT:Answer|Answer 4.2:8|Solution |Solution 4.2:8}} | ||
Line 141: | Line 141: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
| | | | ||
- | |width="100%" | <center> {{:4.2 - | + | |width="100%" | <center> {{:4.2 - Figure - A road from A to B via P and Q}} </center> |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 4.2:9|Solution |Solution 4.2:9}} | </div>{{#NAVCONTENT:Answer|Answer 4.2:9|Solution |Solution 4.2:9}} |
Current revision
Theory | Exercises |
Exercise 4.2:1
Using the trigonometric functions, determine the length of the side marked
a) |
| b) |
|
c) |
| d) |
|
e) |
| f) |
|
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 4.2:2
Determine a trigonometric equation that is satisfied by
a) |
| b) |
|
c) |
| d) |
|
e) |
| f) |
|
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 4.2:3
Determine
a) | ![]() ![]() ![]() | b) | ![]() | c) | ![]() |
d) | ![]() | e) | ![]() | f) | ![]() ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 4.2:4
Determine
a) | ![]() | b) | ![]() | c) | ![]() |
d) | ![]() | e) | ![]() | f) | ![]() ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 4.2:5
Determine
a) | ![]() | b) | ![]() | c) | ![]() | d) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 4.2:6
Determine the length of the side marked
|
Exercise 4.2:7
In order to determine the width of a river, we measure from two points, A and B on one side of the straight bank to a tree, C, on the opposite side. How wide is the river if the measurements in the figure are correct?
|
Exercise 4.2:8
A rod of length
|
Exercise 4.2:9
The road from A to B consists of three straight parts AP, PQ and QB, which are 4.0 km, 12.0 km and 5.0 km respectively. The angles marked at P and Q in the figure are 30° and 90° respectively. Calculate the distance as the crow flies from A to B. (The exercise is taken from the Swedish National Exam in Mathematics, November 1976, although slightly modified.)
|