Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 2.1:6b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.1:6b moved to Solution 2.1:6b: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The lowest common denominator for the three terms is
-
<center> [[Image:2_1_6b.gif]] </center>
+
<math>\left( x-2 \right)\left( x+3 \right)</math>
-
{{NAVCONTENT_STOP}}
+
and we expand each term so that all terms have the same denominator:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{x}{x-2}+\frac{x}{x+3}-2=\frac{x}{x-2}\centerdot \frac{x+3}{x+3}+\frac{x}{x+3}\centerdot \frac{x-2}{x-2}-2\centerdot \frac{\left( x-2 \right)\left( x+3 \right)}{\left( x-2 \right)\left( x+3 \right)} \\
 +
& =\frac{x\left( x+3 \right)+x\left( x-2 \right)-2\left( x-2 \right)\left( x+3 \right)}{\left( x-2 \right)\left( x+3 \right)} \\
 +
& =\frac{x^{2}+3x+x^{2}-2x-2\left( x^{2}+3x-2x-6 \right)}{\left( x-2 \right)\left( x+3 \right)} \\
 +
& =\frac{x^{2}+3x+x^{2}-2x-2x^{2}-6x+4x+12}{\left( x-2 \right)\left( x+3 \right)} \\
 +
\end{align}</math>
 +
 
 +
 
 +
Now, collect together the terms in the numerator:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{x}{x-2}+\frac{x}{x+3}-2=\frac{\left( x^{2}+x^{2}-2x^{2} \right)+\left( 3x-2x-6x+4x \right)+12}{\left( x-2 \right)\left( x+3 \right)} \\
 +
& =\frac{-x+12}{\left( x-2 \right)\left( x+3 \right)} \\
 +
\end{align}</math>
 +
 
 +
 
 +
NOTE: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.

Revision as of 10:53, 16 September 2008

The lowest common denominator for the three terms is x2x+3  and we expand each term so that all terms have the same denominator:


xx2+xx+32=xx2x+3x+3+xx+3x2x22x2x+3x2x+3=x2x+3xx+3+xx22x2x+3=x2x+3x2+3x+x22x2x2+3x2x6=x2x+3x2+3x+x22x2x26x+4x+12


Now, collect together the terms in the numerator:


xx2+xx+32=x2x+3x2+x22x2+3x2x6x+4x+12=x+12x2x+3


NOTE: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.