Solution 2.2:3b
From Förberedande kurs i matematik 1
m (Lösning 2.2:3b moved to Solution 2.2:3b: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | {{ | + | First, we move all the terms over to the left-hand side: |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>\frac{4x}{4x-7}-\frac{1}{2x-3}-1=0</math> |
- | < | + | |
- | {{ | + | |
+ | Then, we multiply the top and bottom of all three terms by appropriate factors so that they have the same common denominator, in the following way, | ||
+ | |||
+ | |||
+ | <math>\frac{4x}{4x-7}\centerdot \frac{2x-3}{2x-3}-\frac{1}{2x-3}\centerdot \frac{4x-7}{4x-7}-\frac{\left( 2x-3 \right)\left( 4x-7 \right)}{\left( 2x-3 \right)\left( 4x-7 \right)}=0</math> | ||
+ | |||
+ | |||
+ | and so that we can rewrite the left-hand side giving | ||
+ | |||
+ | |||
+ | <math>\frac{4x\left( 2x-3 \right)-\left( 4x-7 \right)-\left( 2x-3 \right)\left( 4x-7 \right)}{\left( 2x-3 \right)\left( 4x-7 \right)}=0</math> | ||
+ | |||
+ | |||
+ | We expand the numerator | ||
+ | |||
+ | |||
+ | <math>\frac{8x^{2}-12x-\left( 4x-7 \right)-\left( 8x^{2}-14x-12x+21 \right)}{\left( 2x-3 \right)\left( 4x-7 \right)}=0</math> | ||
+ | |||
+ | |||
+ | and simplify | ||
+ | |||
+ | |||
+ | <math>\frac{10x-14}{\left( 2x-3 \right)\left( 4x-7 \right)}=0</math> | ||
+ | |||
+ | |||
+ | This equation is satisfied when the numerator is zero (provided the denominator is not also zero) and this happens when | ||
+ | |||
+ | |||
+ | <math>10x-14=0</math> | ||
+ | |||
+ | |||
+ | which gives | ||
+ | <math>x={7}/{5}\;</math>. | ||
+ | |||
+ | It can easily happen that we calculate incorrectly, so we must check that the answer | ||
+ | <math>x={7}/{5}\;</math> | ||
+ | satisfies the equation: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \text{LHS }~~~=\text{ }~~~\frac{4\centerdot \frac{7}{5}}{4\centerdot \frac{7}{5}-7}-\frac{1}{2\centerdot \frac{7}{5}-3}\text{ }=\text{ }\left\{ \text{ multiply top and bottom by 5} \right\} \\ | ||
+ | & \text{ }~~~ \\ | ||
+ | & =~\frac{4\centerdot \frac{7}{5}}{4\centerdot \frac{7}{5}-7}\centerdot \frac{5}{5}-\frac{1}{2\centerdot \frac{7}{5}-3}\centerdot \frac{5}{5}=\frac{4\centerdot 7}{4\centerdot 7-7\centerdot 5}-\frac{5}{2\centerdot 7-3\centerdot 5} \\ | ||
+ | & \\ | ||
+ | & =\frac{4}{4-5}-\frac{5}{14-15}=-4-\left( -5 \right)=1\text{ }~~~=\text{ RHS}~~~ \\ | ||
+ | \end{align}</math> |
Revision as of 14:45, 17 September 2008
First, we move all the terms over to the left-hand side:
Then, we multiply the top and bottom of all three terms by appropriate factors so that they have the same common denominator, in the following way,
2x−32x−3−12x−3
4x−74x−7−
2x−3
4x−7
2x−3
4x−7
=0
and so that we can rewrite the left-hand side giving
2x−3
4x−7
4x
2x−3
−
4x−7
−
2x−3
4x−7
=0
We expand the numerator
2x−3
4x−7
8x2−12x−
4x−7
−
8x2−14x−12x+21
=0
and simplify
2x−3
4x−7
=0
This equation is satisfied when the numerator is zero (provided the denominator is not also zero) and this happens when
which gives
5
It can easily happen that we calculate incorrectly, so we must check that the answer
5
574
57−7−12
57−3 =
multiply top and bottom by 5
= 4
574
57−7
55−12
57−3
55=4
74
7−7
5−52
7−3
5=44−5−514−15=−4−
−5
=1 = RHS