Processing Math: Done
Solution 1.2:2d
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
m |
||
Line 8: | Line 8: | ||
the expression can be written as | the expression can be written as | ||
- | {{Displayed math||<math>\frac{ | + | {{Displayed math||<math>\frac{2}{3\cdot 3\cdot 5}+\frac{1}{3\cdot 5\cdot 5}</math>}} |
and then we see that the denominators have <math>3\cdot 5</math> as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5 | and then we see that the denominators have <math>3\cdot 5</math> as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5 | ||
Line 14: | Line 14: | ||
{{Displayed math||<math>\begin{align} | {{Displayed math||<math>\begin{align} | ||
- | \frac{2}{ | + | \frac{2}{3\cdot 3\cdot 5}\cdot \frac{5}{5}+\frac{1}{3\cdot 5\cdot 5}\cdot |
- | \frac{3}{3} &=\frac{2}{ | + | \frac{3}{3} &=\frac{2}{3\cdot 3\cdot 5\cdot 5} |
+\frac{3}{3\cdot 5\cdot 5\cdot 3}\\[10pt] | +\frac{3}{3\cdot 5\cdot 5\cdot 3}\\[10pt] | ||
&= \frac{10}{225}+\frac{3}{225}\,\textrm{.}\\ | &= \frac{10}{225}+\frac{3}{225}\,\textrm{.}\\ |
Current revision
If we divide up the denominators into their smallest possible integer factors,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
the expression can be written as
![]() ![]() ![]() ![]() |
and then we see that the denominators have 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The lowest common denominator is 225.